Displaying publications 21 - 40 of 284 in total

Abstract:
Sort:
  1. Wun Fui Mark-Lee, Mohammad B. Kassim, Mohd Faizal Md Nasir
    Sains Malaysiana, 2018;47:741-747.
    A benzoylthiourea molecule namely 1,1-dibenzyl-3-(2-bromobenzoyl)thiourea (2BrBT) was synthesized and characterized
    by C, H, N and S elemental, mass spectrometry and spectroscopic analyses (infrared, ultraviolet-visible and nuclear
    magnetic resonance). The 2BrBT compound crystallized in a tetragonal system with the space group P43 and exhibits
    an acentric crystalline packing due to the presence of intermolecular H-bonding network that forms a self-assembly
    of 1D helical motif. The asymmetric delocalisation of electrons in the molecule retains its transparency throughout the
    visible and near-infrared region and hence, essentially propagates the macroscopic helical motif in the solid state. The
    highest-occupied and lowest-unoccupied molecular orbital (HOMO/LUMO) are mainly found on the thiourea moiety and
    the benzoylthiourea fragment, respectively and shows an optical bandgap of 3.50 eV. The influence of its geometrical
    characteristics to the optical properties of 2BrBT is established and discussed in view of nonlinear optical (NLO)
    application.
    Matched MeSH terms: Electrons
  2. Wun FML, Muhd Hafizi Zainal, Syahidah Mohd Tahir, Ishak B. Ahmad, Mohammad B. Kassim
    Sains Malaysiana, 2018;47:923-929.
    The presence of two different chromophores in benzothiazole molecule namely benzothiazole and aromatic rings lead to
    interesting chemical and biological properties that attract more researches on the compounds. Three new benzothiazolylbenzoythiourea
    compounds namely 1-(1,3-benzothiazol-2-yl)-3-(benzoylthiourea) (BBT), 1-(1,3-benzothiazol-2-yl)-3-
    (4-chlorobenzoylthiourea) (BBT-4Cl) and 1-(1,3-benzothiazol-2-yl)-3-(4-methoxybenzoylthiourea) (BBT-4OCH3
    ) with
    different electron withdrawing substituents (R) at the para positions on the benzene ring of benzoylthiourea ring have
    been synthesized from the reaction of R-benzoyl isothiocyanate (R= H, Cl, and OCH3
    ) and 2-aminobenzothiazole. The
    compounds were characterized by spectroscopic techniques (infrared, 1
    H proton NMR and UV-Vis). The IR spectra showed
    the frequency signals of n (C=O), n (C=S), n (N-H) at 1664-1673, 1238-1249 and 3031-3055 cm-1, respectively. The 1
    H
    proton NMR spectra showed the presence of N-H amine and amide signals in the region of (12.14-12.35) and (14.17-14.43)
    ppm, respectively. The proton signals of the two benzothiazole and benzoylthiourea moieties appear at 7.08-8.16 ppm.
    A theoretical study based on Density Functional Theory (DFT) and Time-Dependent (TD) DFT was conducted to optimize
    the geometrical structure and investigate the electronic properties of title compounds. The highest occupied molecular
    orbital (HOMO) was found on the benzothiazole moiety; while, the lowest-unoccupied molecular orbital (LUMO) was
    located at the benzoylthiourea fragment. The DFT optimized structures possessed an intramolecular hydrogen bonding
    and the types of para substituents used influenced the properties of hydrogen bonding.
    Matched MeSH terms: Electrons
  3. Wu H, Kong XY, Wen X, Chai SP, Lovell EC, Tang J, et al.
    Angew Chem Int Ed Engl, 2021 Apr 06;60(15):8455-8459.
    PMID: 33368920 DOI: 10.1002/anie.202015735
    Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
    Matched MeSH terms: Electrons
  4. Woon KL, Mustapa SAS, Mohd Jamel NS, Lee VS, Zakaria MZ, Ariffin A
    Chemphyschem, 2020 Sep 17.
    PMID: 32940952 DOI: 10.1002/cphc.202000612
    Material designs that use donor and acceptor units are often found in organic optoelectronic devices. Molecular level insight into the interactions between donors and acceptors are crucial for understanding how such interactions can modify the optical properties of the organic optoelectronic materials. In this paper, tris(4-(tert-butyl)phenyl)amine (pTPA) was synthesized as a donor in order to compare with unmodified triphenylamine (TPA) in a donor-acceptor system by having 2,4,6-triphenyl-1,3,5-triazine (TRZ) as an acceptor. Dimerization of donors and acceptors occurred in solvent when the concentration of solute is high. At 0 K, using a polarizable continuum model, the nitrogen atom of TPA is found to stack on top of the center of triazine of TRZ, whereas such alignment is offset in pTPA and TRZ. We attributed such alignment in TPA-TRZ as the result of attractive interactions between partial localization of 2pz electrons at the nitrogen atom of TPA and the π deficiency of triazine in TPA-TRZ. By taking into account random motions of the solvent effect at 300 K in quantum molecular dynamics and classical molecular dynamics simulations to interpret the marked difference in emission spectra between TPA-TRZ and pTPA-TRZ, it was revealed that the attractive interaction between pTPA and TRZ in toluene is weaker than TPA and TRZ. Because of the weaker attractive interaction between pTPA and TRZ in toluene, the dimers adopted numerous ground state conformations resulting in broad emission bands superimposed with multiple small Gaussian peaks. This is in contrast to TPA-TRZ which has only one dominant dimer conformation. This study demonstrates that the strength of intermolecular interactions between donors and acceptors should be taken into consideration in designing supramolecular structures.
    Matched MeSH terms: Electrons
  5. Wang CT, Huang YS, Sangeetha T, Chen YM, Chong WT, Ong HC, et al.
    Bioresour Technol, 2018 May;255:83-87.
    PMID: 29414177 DOI: 10.1016/j.biortech.2018.01.086
    Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m2, current density of 46.34 mA/m2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs.
    Matched MeSH terms: Electrons
  6. Wan Ismail WZ, Sim KS, Tso CP, Ting HY
    Scanning, 2011 Jul-Aug;33(4):233-51.
    PMID: 21611953 DOI: 10.1002/sca.20237
    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts.
    Matched MeSH terms: Electrons
  7. Waje, Samaila Bawa, Noorhana Yahya, Irmawati Ramli
    MyJurnal
    Monoclinic bismuth oxide (α-Bi2O3) nanoparticles were prepared via precipitation method and
    irradiated with a pulsed laser forming thin films. Their phase and surface morphological properties
    were investigated using x-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron
    microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The XRD
    analysis shows the phase transformation to a partially crystalline tetragonal phase β-Bi2O3 thin film.
    The SEM micrograph of the nanoparticles, with an average crystal size of 72 nm, was seen to form
    a thin film with a peculiar structure, coined as “cotton-like”, is attributed to the high surface energy
    absorbed by the nanoparticles during ablation. The HR-TEM micrograph shows the particulate with
    a clearly defined interlayer spacing.
    Matched MeSH terms: Electrons
  8. Wagiran, Husin, Supramaniam, Thiagu, Azali Mohamad, Abdul Aziz Mohamed, Faridah M. Idris
    MyJurnal
    Neutron aperture is one of the collimator components in a neutron radiography facility. The optimum design of neutron aperture is very importance in order to obtain largest L/D ratio with highest thermal neutron flux and low gamma-rays at the image plane. In this study, the optimization of neutron aperture parameters were done using Monte Carlo N-Particle Transport Code, version five (MCNP5). This code has a capability to simulate the neutron, photon, and electron or coupled of neutron/photon/electron transport, including the capability to calculate eigen values for critical system. The aperture parameters concerned in this study are the selection of best aperture material, aperture thickness, aperture position and aperture center hole diameter. In these simulations, vacuum beam port medium was applied.
    Matched MeSH terms: Electrons
  9. Vinoth S, Ong WJ, Pandikumar A
    J Colloid Interface Sci, 2021 Jun;591:85-95.
    PMID: 33592528 DOI: 10.1016/j.jcis.2021.01.104
    Cobalt incorporated sulfur-doped graphitic carbon nitride with bismuth oxychloride (Co/S-gC3N4/BiOCl) heterojunction is prepared by an ultrasonically assisted hydrothermal treatment. The heterojunction materials have employed in photoelectrochemical (PEC) water splitting. The PEC activity and stability of the materials are promoted by constructing an interface between the visible light active semiconductor photocatalyst and cocatalysts. The photocurrent density of Co-9% S-gC3N4/BiOCl has attained 393.0 μA cm-2 at 1.23 V vs. RHE, which is 7-fold larger than BiOCl and ~3-fold higher than 9% S-gC3N4/BiOCl. The enhanced PEC activity can be attributed to the improved electron-hole charge separation and the boosted charge transfer is confirmed by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analysis. The fabricated Co/S-gC3N4/BiOCl nanohybrid material has exhibited high stability of up to 10,800 s (3 h) at 1.23 V vs. RHE during PEC water splitting reaction and the obtained photo-conversion efficiency is 3.7-fold greater than S-gC3N4/BiOCl and 17-fold higher than BiOCl. The FESEM and HRTEM images have revealed the formation of heterojunction interface between S-gC3N4 and BiOCl and the elemental mapping has confirmed the presence of cobalt over S-gC3N4/BiOCl. The heterojunction interface has facilitated the photo-excited charge separation and transport across the electrode/electrolyte interface and also the flat-band potential, which is confirmed by Mott-Schottky analysis.
    Matched MeSH terms: Electrons
  10. Veeraswamy Kesavan, Abdulrasheed Mansur, Mohd Syahmi Ramzi Salihan, Rahman, M.F., Suhaili, Zarizal, Shukor, M.Y.
    MyJurnal
    The indiscriminate released of heavy metals and xenobiotics into soils and aquatic bodies
    severely alter soil organisms and the ecosystem. The isolation of xenobiotics degrading
    microorganisms is cost-effective and naturally pleasant approach. Lately, the toxicological effect
    of molybdenum to the spermatogenesis of several organisms has been record. This present study
    is aimed at the isolation and characterization of a bacterium capable of converting molybdenum
    to the colloidal molybdenum blue. Bacteria characterization was performed in a microplate
    format using resting cells. Thus, the reduction process can be employed as a device for
    molybdenum bioremediation. The results of the study revealed an optimum reduction at pH
    between 6.0 and 6.3 and temperatures of between 25 and 40 oC. Similarly, it was also observed
    that a phosphate concentration not greater than 5.0 mM and a sodium molybdate concentration
    at 20 mM was required for reduction. Glucose was observed as the best carbon source to support
    reduction. Following the scanning of molybdenum blue, it revealed an absorption spectrum
    indicating the characteristics of molybdenum blue as a reduced phosphomolybdate. Molybdenum
    reduction is inhibited by heavy metals like silver, lead, arsenic and mercury. Furthermore, the
    ability of the bacterium (Pseudomonas sp. strain Dr.Y Kertih) to utilize several organic
    xenobiotics such as phenol, acrylamide, nicotinamide, acetamide, iodoacetamide, propionamide,
    acetamide, sodium dodecyl sulfate (SDS) and diesel as electron donor sources for aiding
    reduction or as carbon sources for growth was also examined. Finding showed that none was
    capable of aiding molybdenum reduction, however the bacterium was capable of growing on both
    diesel and phenol as carbon sources. GC analysis was used to confirmed diesel degradation.
    Matched MeSH terms: Electrons
  11. Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Uda MNA, et al.
    3 Biotech, 2021 May;11(5):205.
    PMID: 33868892 DOI: 10.1007/s13205-021-02740-9
    This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with -C=C- and O-H stretching at peaks of 1644 cm-1 and 3435 cm-1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%.
    Matched MeSH terms: Electrons
  12. Tung J, Tew LS, Coluccini C, Lin YD, Khung YL
    Chemistry, 2018 Jun 22.
    PMID: 29932257 DOI: 10.1002/chem.201802003
    This work reports the outcome of thermal grafting of 2-ethynylaniline, 3-ethynylaniline, and 4-ethynylaniline on a hydrogenated Si(100) surface. Using high-resolution XPS and AFM, it was found that the grafting of these compounds could be attributed to resonating structures that arise from the position of an electron-donating NH2 group and an electron-withdrawing acetylene group. For the ortho- and para-positioned acetylene group, surface reactions were observed to proceed predominantly via the acetylene to form a Si-C bond, whereas the meta-positioned acetylene group was found to have undergone nucleophilic grafting through the NH2 group onto the silicon surface to form a Si-N bond. Furthermore, a tert-butoxycarbonyl-protected derivative for a meta-positioned ethynylaniline was synthesized to exclusively force the reaction to react with the acetylene group and subsequent analysis confirmed that unprotected 3-ethynylaniline had indeed reacted through the nucleophilic NH2 group as hypothesized. Thus, for the first time, the interplay between resonance structures and their effects on silicon surface modifications were systematically catalogued.
    Matched MeSH terms: Electrons
  13. Tuan DD, Oh WD, Ghanbari F, Lisak G, Tong S, Andrew Lin KY
    J Colloid Interface Sci, 2020 Nov 01;579:109-118.
    PMID: 32574728 DOI: 10.1016/j.jcis.2020.05.033
    As sulfate-radical (SR)-based advanced oxidation processes are increasingly implemented, Oxone has been frequently-used for generation of SR. While Co3O4 nanoparticle (NP) has been widely-accepted as a promising catalyst for activating Oxone, Co3O4 NPs tend to aggregate in water, losing their reactivity. Thus, many attempts have immobilized Co3O4 NPs on supports, especially carbonaceous substrates, because combination of Co NPs with carbon substrates offers synergistic effects for boosting catalytic activities. Moreover, carbon substrates doped with hetero-atoms (N and S) further increase electron transfer and reactivity. Therefore, it is even promising to immobilize Co NPs onto N/S-doped carbon (NSC) to form Co-embedded NSC (denoted as CoNSC) for enhancing Oxone activation. In this study, a convenient and facile technique is proposed to prepare such a CoNSC via a simple carbonization treatment of a coordination polymer of Co and trithiocyanuric acid (TTCA). The resulting CoNSC exhibits the sheet-like hexagonal morphology with the core-shell configuration, and Co NPs are well-embedded into the N/S-doped carbonaceous matrix, making it an advantageous heterogeneous catalyst for Oxone activation. As Azorubine S (ARS) decolorization is employed as a model reaction of Oxone activation, CoNSC exhibits a higher catalytic activity than pristine Co3O4 and NSC for Oxone activation to decolorize ARS. In comparison to the other reported catalysts, CoNSC also possesses a much lower Ea for ARS decolorization. CoNSC can be also reusable and stable for Oxone activation over multiple cycles without loss of catalytic activity. These features validate that CoNSC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Electrons
  14. Tran HN, Nguyen DT, Le GT, Tomul F, Lima EC, Woo SH, et al.
    J Hazard Mater, 2019 07 05;373:258-270.
    PMID: 30925385 DOI: 10.1016/j.jhazmat.2019.03.018
    An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl-, NO3-, SO42-, and CO32-) provide a high anion exchange capacity (53-520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer-Emmett-Teller specific surface area of LDH (1.80-179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° <0) and endothermically (ΔH° >0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater.
    Matched MeSH terms: Electrons
  15. Toong WY, Khaulah Sulaiman
    In this research we investigated the effect of composition on the fabrication and morphological characteristics of a hybrid polymeric solar cell which consists of an electron donating conjugated polymer, namely is poly(3-hexylthiophene) (P3HT) combined with an electron-accepting component, which is a type of inorganic compound of TiO2 nanocrystals. The composition of TiO2 in the blends is varied and the optimum performance of the devices are studied. The optical and morphological characterizations are carried out via UV-Visible absorption spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The electrical characteristics of the devices are measured by using Keithley 2400 SMU and solar simulator with light intensity of 100 mW/cm2.
    Matched MeSH terms: Electrons
  16. Thung WE, Ong SA, Ho LN, Wong YS, Ridwan F, Oon YL, et al.
    Bioresour Technol, 2015 Dec;197:284-8.
    PMID: 26342340 DOI: 10.1016/j.biortech.2015.08.078
    Single chambered up-flow membrane-less microbial fuel cell (UFML MFC) was developed to study the feasibility of the bioreactor for decolorization of Acid Orange 7 (AO7) and electricity generation simultaneously. The performance of UFML MFC was evaluated in terms of voltage output, chemical oxygen demand (COD) and color removal efficiency by varying the concentration of AO7 in synthetic wastewater. The results shown the voltage generation and COD removal efficiency decreased as the initial AO7 concentration increased; this indicates there is electron competition between anode and azo dye. Furthermore, there was a phenomenon of further decolorization at cathode region which indicates the oxygen and azo dye are both compete as electron acceptor. Based on the UV-visible spectra analysis, the breakdown of the azo bond and naphthalene compound in AO7 were confirmed. These findings show the capability of integrated UFML MFC in azo dye wastewater treatment and simultaneous electricity generation.
    Matched MeSH terms: Electrons
  17. Thent ZC, Seong Lin T, Das S, Zakaria Z
    PMID: 23304208 DOI: 10.1155/2012/628750
    Although Piper sarmentosum (PS) is known to possess the antidiabetic properties, its efficacy towards diabetic cardiovascular tissues is still obscured. The present study aimed to observe the electron microscopic changes on the cardiac tissue and proximal aorta of experimental rats treated with PS extract. Thirty-two male Sprague-Dawley rats were divided into four groups: untreated control group (C), PS-treated control group (CTx), untreated diabetic group (D), and PS-treated diabetic group (DTx). Intramuscular injection of streptozotocin (STZ, 50 mg/kg body weight) was given to induce diabetes. Following 28 days of diabetes induction, PS extract (0.125 g/kg body weight) was administered orally for 28 days. Body weight, fasting blood glucose, and urine glucose levels were measured at 4-week interval. At the end of the study, cardiac tissues and the aorta were viewed under transmission electron microscope (TEM). DTx group showed increase in body weight and decrease in fasting blood glucose and urine glucose level compared to the D group. Under TEM study, DTx group showed lesser ultrastructural degenerative changes in the cardiac tissues and the proximal aorta compared to the D group. The results indicate that PS restores ultrastructural integrity in the diabetic cardiovascular tissues.
    Matched MeSH terms: Electrons
  18. Then, Yoon Yee, NorAzowa Ibrahim, Norhazlin Zainuddin, Hidayah Ariffin, Wan MdZin Wan Yunus
    MyJurnal
    Natural fiber is incompatible with hydrophobic polymer due to its hydrophilic nature. Therefore, surface modification of fiber is needed to impart compatibility. In this work,superheated steam (SHS)-alkali was introduced as novel surface treatment method to modify oil palm mesocarp fiber (OPMF) for fabrication of biocomposites. The OPMF was first pre-treated with SHS and subsequently treated with varying NaOH concentration (1, 2, 3, 4 and 5%) and soaking time (1, 2, 3 and 4h) at room temperature. The biocomposites were then fabricated by melt blending of 70 wt% SHS-alkali treated-OPMFs and 30 wt% poly(butylene succinate) in a Brabender internal mixer followed by hot-pressed moulding. The combination treatment resulted in fiber with rough surface as well as led to the exposure ofmicrofibers. The tensile test result showed that fiber treated at 2% NaOH solution and 3h soaking time produced biocomposite with highest improvement in tensile strength (69%) and elongation at break (36%) in comparison to that of untreated OPMF. The scanning electron micrographs of tensile fracture surfaces of biocomposite provide evident for improved adhesion between fiber and polymer after thetreatments.This work demonstrated that combination treatments of SHS and NaOH could be a promising way to modify OPMF for fabrication of biocomposite.
    Matched MeSH terms: Electrons
  19. Tao J, Chen J, Li J, Mathurin L, Zheng JC, Li Y, et al.
    Proc Natl Acad Sci U S A, 2017 09 12;114(37):9832-9837.
    PMID: 28855335 DOI: 10.1073/pnas.1709163114
    The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects--electronic or structural--is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu2S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure.
    Matched MeSH terms: Electrons
  20. Tan X, Zhu S, Show PL, Qi H, Ho SH
    J Hazard Mater, 2020 07 05;393:122435.
    PMID: 32151933 DOI: 10.1016/j.jhazmat.2020.122435
    Biochar (BC) has attracted much attention owing to its superior sorption capacity towards ionized organic contaminants. However, the mechanism of ionized organics sorption occurring within BC containing large amounts of minerals is still controversial. In this study, we demonstrate the physicochemical structure of high-salinity microalgal residue derived biochar (HSBC) and elucidate the corresponding sorption mechanisms for four ionized dyes along with determining the crucial role of involved minerals. The results indicate that sodium and calcium minerals mainly exist within HSBCs, and the pyrolysis temperature can dramatically regulate the phases and interfacial property of both carbon matrix and minerals. As a result, the HSBC shows a higher sorption potential, benefiting from abundant functional groups and high content of inorganic minerals. Using theoretical calculations, the activities of electron donor-acceptor interaction between HSBCs and different dyes are clearly illustrated, thereby identifying the critical role of Ca2+ in enhancing the removal of ionized dyes in HSBCs. In addition, Ca-containing minerals facilitate the sorption of ionized dyes in HSBCs by forming ternary complexes through metal-bridging mechanism. These results of mineral-induced dye sorption mechanisms help to better understand the sorption of ionized organics in high-salt containing BC and provide a new disposal strategy for hazardous microalgal residue, as well as provide a breakthrough in making the remediation of ionized organic contaminated microalgal residue derived absorbent feasible.
    Matched MeSH terms: Electrons
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links