Displaying publications 21 - 40 of 1575 in total

Abstract:
Sort:
  1. Lau BF, Aminudin N, Abdullah N
    J Microbiol Methods, 2011 Oct;87(1):56-63.
    PMID: 21801760 DOI: 10.1016/j.mimet.2011.07.005
    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
    Matched MeSH terms: Polyporaceae/growth & development
  2. Abu-Rub N, Samsudin AR, Abdullah AB, Abdullah N
    Aust Orthod J, 2005 May;21(1):39-43.
    PMID: 16433080
    Presurgical orthopaedics has been employed since the 1950s as an adjunctive neonatal therapy for the correction of cleft lip and palate. It is accepted that presurgical orthopaedic plates facilitate lip repair and balanced orofacial growth.
    Matched MeSH terms: Palate/growth & development
  3. Nooraee SE, Alimon AR, Ho YW, Abdullah N
    Lett Appl Microbiol, 2010 Jun 1;50(6):578-84.
    PMID: 20406377 DOI: 10.1111/j.1472-765X.2010.02836.x
    The aim of this study was to find suitable yeast isolates as potential microbial feed additives for ruminants.
    Matched MeSH terms: Kluyveromyces/growth & development
  4. Teoh HL, Ahmad IS, Johari NMK, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2018;20(4):369-380.
    PMID: 29953397 DOI: 10.1615/IntJMedMushrooms.2018025986
    Mushroom cultivation has become an important component of agriculture, providing food and contributing to the global economy. It uses vertical space and addresses issues of food quality, health improvement, and environmental sustainability. Auricularia mushrooms are popular ingredients in traditional Chinese cuisine. The objective of this study was to determine yield and evaluate radical scavenging capacity of A. polytricha cultivated on rubberwood sawdust on a large scale; we measured total phenolic content; DPPH, hydroxyl, superoxide anion, and peroxyl radical scavenging; and reducing power. Cultivation on rubberwood sawdust produces an average of 4 harvests per bag and a biological efficiency of 80-82%. The antioxidant capacity investigations revealed that the ethyl acetate fraction was the most potent radical scavenger in all assays except that for superoxide anions, whereas the aqueous fraction exhibited mild to moderate antioxidant capacity in scavenging the various radicals. Artificial cultivation of A. polytricha on rubberwood sawdust yields many sporophores with potent antioxidant capacity.
    Matched MeSH terms: Agaricales/growth & development*
  5. Awang K, Mukhtar MR, Hadi AH, Litaudon M, Latip J, Abdullah NR
    Nat Prod Res, 2006 May 20;20(6):567-72.
    PMID: 16835089
    The alkaloidal extract of the leaves of Phoebe grandis (nees) merr. have provided two new minor alkaloids; phoebegrandine D (1), a proaporphine-tryptamine dimer, and phoebegrandine E (2), an indoloquinolizidine. This is the first report on the occurrence of an indoloquinolizidine in the Phoebe species. The crude extract also exhibited antiplasmodial activity (IC50<8 microg mL-1). The structures of the novel compounds were elucidated by spectroscopic methods, notably 2D NMR and HRMS.
    Matched MeSH terms: Plasmodium falciparum/growth & development
  6. Zain MM, Kofli NT, Rozaimah S, Abdullah S
    Pak J Biol Sci, 2011 May 01;14(9):526-32.
    PMID: 22032081
    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.
    Matched MeSH terms: Yeasts/growth & development*
  7. Odeyemi OA, Abdullah Sani N
    Microb Pathog, 2019 Nov;136:103665.
    PMID: 31404630 DOI: 10.1016/j.micpath.2019.103665
    This study aimed to investigate antibiotic resistance and putative virulence factors among Cronobacter sakazakii isolated from powdered infant formula and other sources. The following 9 cultures (CR1-9) were collected from our culture collection: C. sakazakii and 3 Cronobacter species: C. sakazakii ATCC® 29544™, C. muytjensii ATCC® 51329™, C. turicensis E866 were used in this study. Isolates were subjected to antibiotic susceptibility and the following virulence factors (protease, DNase, haemolysin, gelatinase, motility and biofilm formation) using phenotypic methods. All the bacteria were able to form biofilm on agar at 37 °C and were resistant to ampicillin, erythromycin, fosfomycin and sulphamethoxazole. It was observed from this study that tested strains formed weak and strong biofilm with violet dry and rough (rdar), brown dry and rough (bdar), red mucoid and smooth (rmas) colony morphotypes on Congo red agar. Rdar expresses curli and fimbriae, while bdar expresses curli. Both biofilm colony morphotypes are commonly found in Enterobacteriaceae including Salmonella species. This study also reveals a new colony morphotypes in Cronobacter species. Conclusively, there was correlation between putative virulence factors and antibiotic resistance among the tested bacteria. Further study on virulence and antibiotic resistance genes is hereby encouraged.
    Matched MeSH terms: Biofilms/growth & development; Cronobacter/growth & development
  8. Babaei N, Abdullah NA, Saleh G, Abdullah TL
    ScientificWorldJournal, 2014;2014:275028.
    PMID: 24723799 DOI: 10.1155/2014/275028
    A procedure was developed for in vitro propagation of Curculigo latifolia through shoot tip culture. Direct regeneration and indirect scalp induction of Curculigo latifolia were obtained from shoot tip grown on MS medium supplemented with different concentrations and combinations of thidiazuron and indole-3-butyric acid. Maximum response for direct regeneration in terms of percentage of explants producing shoot, shoot number, and shoot length was obtained on MS medium supplemented with combination of thidiazuron (0.5 mg L(-1)) and indole-3-butyric acid (0.25 mg L(-1)) after both 10 and 14 weeks of cultures. Indole-3-butyric acid in combination with thidiazuron exhibited a synergistic effect on shoot regeneration. The shoot tips were able to induce maximum scalp from basal end of explants on the medium with 2 mg L(-1) thidiazuron. Cultures showed that shoot number, shoot length, and scalp size increased significantly after 14 weeks of culture. Transferring of the shoots onto the MS medium devoid of growth regulators resulted in the highest percentage of root induction and longer roots, while medium supplemented with 0.25 mg L(-1) IBA produced more numbers of roots.
    Matched MeSH terms: Plants, Medicinal/growth & development*; Plant Shoots/growth & development*; Curculigo/growth & development*
  9. Basir R, Hasballah K, Jabbarzare M, Gam LH, Abdul Majid AM, Yam MF, et al.
    Trop Biomed, 2012 Sep;29(3):405-21.
    PMID: 23018504 MyJurnal
    The involvement of interleukin-18 (IL-18) and the effects of modulating its release on the course of malaria infection were investigated using Plasmodium berghei ANKA infection in ICR mice as a model. Results demonstrated that plasma IL-18 concentrations in malarial mice were significantly elevated and positively correlated with the percentage parasitaemia development. Significant expressions of IL-18 were also observed in the brain, spleen and liver tissues. Slower development of parasitaemia was observed significantly upon inhibition and neutralization of IL-18, whereas faster development of parasitaemia was recorded when the circulating levels of IL-18 were further augmented during the infection. Inhibition and neutralization of IL-18 production also resulted in a significant decrease of plasma concentrations of pro-inflammatory cytokines (TNFα, IFNγ, IL-1α and IL-6), whereas the anti-inflammatory cytokine, IL-10, was significantly increased. Augmenting the release of IL- 18 during the infection on the other hand resulted in the opposite. Early mortality in malarial mice was also observed when the circulating levels of IL-18 were further augmented. Results proved the important role of IL-18 in immune response against malaria and suggest that IL-8 is pro-inflammatory in nature and may involve in mediating the severity of the infection through a pathway of elevating the pro-inflammatory cytokine and limiting the release of anti-inflammatory cytokine.
    Matched MeSH terms: Plasmodium berghei/growth & development
  10. Abdallah Q, Al-Deeb I, Bader A, Hamam F, Saleh K, Abdulmajid A
    Mol Med Rep, 2018 Aug;18(2):2441-2448.
    PMID: 29901194 DOI: 10.3892/mmr.2018.9155
    Angiogenesis plays a crucial role in malignant tumor progression and development. The present study aimed to identify lead plants with selective anti-angiogenic properties. A total of 26 methanolic extracts obtained from 18 plants growing in Saudi Arabia and Jordan that belong to the Lamiaceae family were screened for their cytotoxic and anti-angiogenic activities using MTT and rat aortic ring assays, respectively. Four novel extracts of Thymbra capitata (L.) Cav., Phlomis viscosa Poir, Salvia samuelssonii Rech.f., and Premna resinosa (Hochst.) Schauer were identified for their selective anti-angiogenic effects. These extracts did not exhibit cytotoxic effects on human endothelial cells (EA.hy926) indicating the involvement of indirect anti-angiogenic mechanisms. The active extracts are potential candidates for further phytochemical and mechanistic studies.
    Matched MeSH terms: Aorta/growth & development
  11. Jassim SA, Abdulamir AS, Abu Bakar F
    World J Microbiol Biotechnol, 2012 Jan;28(1):47-60.
    PMID: 22806779 DOI: 10.1007/s11274-011-0791-6
    To explore new approaches of phage-based bio-process of specifically pathogenic Escherichia coli bacteria in food products within a short period. One hundred and forty highly lytic designed coliphages were used. Escherichia coli naturally contaminated and Enterohemorrhagic Escherichia coli experimentally inoculated samples of lettuce, cabbage, meat, and egg were used. In addition, experimentally produced biofilms of E. coli were tested. A phage concentration of 10(3) PFU/ml was used for food products immersion, and for spraying of food products, 10(5) PFU/ml of a phage cocktail was used by applying a 20-s optimal dipping time in a phage cocktail. Food samples were cut into pieces and were either sprayed with or held in a bag immersed in lambda buffer containing a cocktail of 140 phages. Phage bio-processing was successful in eliminating completely E. coli in all processed samples after 48 h storage at 4°C. Partial elimination of E. coli was observed in earlier storage periods (7 and 18 h) at 24° and 37°C. Moreover, E. coli biofilms were reduced >3 log cycles upon using the current phage bio-processing. The use of a phage cocktail of 140 highly lytic designed phages proved highly effective in suppressing E. coli contaminating food products. Proper decontamination/prevention methods of pathogenic E. coli achieved in this study can replace the current chemically less effective decontamination methods.
    Matched MeSH terms: Biofilms/growth & development*
  12. Azwandi A, Abu Hassan A
    Trop Biomed, 2009 Apr;26(1):1-10.
    PMID: 19696721 MyJurnal
    This study was carried out in an oil palm plantation in Bandar Baharu, Kedah using monkey carcasses and focuses in documenting the decomposition and dipteran colonization sequences in 50 days. This is the first study of Diptera associated with the exploitation of carcasses conducted in the north of peninsular Malaysia during the dry and wet seasons thereat. During the process of decomposition in both seasons, five phases of decay were recognized namely fresh, bloated, active decay, advance decay and dry remain. In this decomposition study, biomass loss of carcass occurred rapidly during the fresh to active decay stage due to the colonization and feeding activity of the Diptera larvae. The duration of the fresh and bloated stages of decay were the same in wet and dry seasons but later stages of decay were markedly shorter during the wet season. Twenty one species of adult Diptera were identified colonizing carcasses in the study period. Among the flies from the family Calliphoridae, Chrysomya megacephala Fabricius and Chrysomya nigripes Aubertin were recognized as the earliest arrivals on the first day of exposure. Adult Ch. nigripes was abundant for approximately two weeks after placement of the carcasses. By comparing the percentages of adults collected during the study period, the calliphorids abundance in percentages in wet season was 50.83%, but in dry season, the abundance was only about 35.2%. In contrast, the percentage of Sphaeroceridae in wet season was only 3.33%, but in the dry season, the abundance was 20.8%. Dipteran in family Phoridae, Piophilidae, Sepsidae, Drosophilidae and Dolichopodidae colonized the carcasses for a long period of time and were categorized as long term colonizers.
    Matched MeSH terms: Larva/growth & development
  13. Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH
    ScientificWorldJournal, 2014;2014:186508.
    PMID: 25548778 DOI: 10.1155/2014/186508
    Human exfoliated deciduous teeth (SHED) and adipose stem cells (ASC) were suggested as alternative cell choice for cardiac regeneration. However, the true functionability of these cells toward cardiac regeneration is yet to be discovered. Hence, this study was carried out to investigate the innate biological properties of these cell sources toward cardiac regeneration. Both cells exhibited indistinguishable MSCs characteristics. Human stem cell transcription factor arrays were used to screen expression levels in SHED and ASC. Upregulated expression of transcription factor (TF) genes was detected in both sources. An almost equal percentage of >2-fold changes were observed. These TF genes fall under several cardiovascular categories with higher expressions which were observed in growth and development of blood vessel, angiogenesis, and vasculogenesis categories. Further induction into cardiomyocyte revealed ASC to express more significantly cardiomyocyte specific markers compared to SHED during the differentiation course evidenced by morphology and gene expression profile. Despite this, spontaneous cellular beating was not detected in both cell lines. Taken together, our data suggest that despite being defined as MSCs, both ASC and SHED behave differently when they were cultured in a same cardiomyocytes culture condition. Hence, vigorous characterization is needed before introducing any cell for treating targeted diseases.
    Matched MeSH terms: Cardiovascular System/growth & development*
  14. Gunawardena TNA, Masoudian Z, Rahman MT, Ramasamy TS, Ramanathan A, Abu Kasim NH
    PLoS One, 2019;14(5):e0216003.
    PMID: 31042749 DOI: 10.1371/journal.pone.0216003
    Alopecia is a clinical condition caused by excessive hair loss which may result in baldness, the causes of which still remain elusive. Conditioned media (CM) from stem cells shows promise in regenerative medicine. Our aim was to evaluate the potential CM of dental pulp stem cells obtained from human deciduous teeth (SHED-CM) to stimulate hair growth under in vitro and in vivo conditions. SHED and hair follicle stem cells (HFSCs) (n = 3) were cultured in media combinations; i) STK2, ii) DMEM-KO+10% FBS, iii) STK2+2% FBS and profiled for the presence of positive hair growth-regulatory paracrine factors; SDF-1, HGF, VEGF-A, PDGF-BB and negative hair growth-regulatory paracrine factors; IL-1α, IL-1β, TGF-β, bFGF, TNF-α, and BDNF. The potential of CM from both cell sources to stimulate hair growth was evaluated based on the paracrine profile and measured dynamics of hair growth under in vitro conditions. The administration of CM media to telogen-staged synchronized 7-week old C3H/HeN female mice was carried out to study the potential of the CM to stimulate hair growth in vivo. SHED and HFSCs cultured in STK2 based media showed a shorter population doubling time, higher viability and better maintenance of MSC characteristics in comparison to cells cultured in DMEM-KO media. STK2 based CM contained only two negative hair growth-regulatory factors; TNF-α, IL-1 while DMEM-KO CM contained all negative hair growth-regulatory factors. The in vitro study confirmed that treatment with STK2 based media CM from passage 3 SHED and HFSCs resulted in a significantly higher number of anagen-staged hair follicles (p<0.05) and a significantly lower number of telogen-staged hair follicles (p<0.05). Administration of SHED-CM to C3H/HeN mice resulted in a significantly faster stimulation of hair growth in comparison to HFSC-CM (p<0.05), while the duration taken for complete hair coverage was similar for both CM sources. Thus, SHED-CM carries the potential to stimulate hair growth which can be used as a treatment tool for alopecia.
    Matched MeSH terms: Hair/growth & development; Hair Follicle/growth & development
  15. Chang LY, Ali AR, Hassan SS, AbuBakar S
    J Med Virol, 2006 Aug;78(8):1105-12.
    PMID: 16789019
    Nipah virus infection of porcine stable kidney cells (PS), human neuronal cells (SK-N-MC), human lung fibroblasts cells (MRC-5), and human monocytes (THP-1) were examined. Rapid progression of cytopathic effects (CPE) and cell death were noted in PS cell cultures treated with Nipah virus, followed by MRC-5, SK-N-MC, and THP-1 cell cultures, in descending order of rapidity. Significant increase in the intracellular Nipah virus RNA occurred beginning at 24 hr PI in all the infected cells. Whereas, the extracellular release of Nipah virus RNA increased significantly beginning at 48 and 72 hr PI for the infected MRC-5 cells and PS cells, respectively. No significant release of extracellular Nipah virus RNA was detected from the Nipah virus-infected SK-N-MC and THP-1 cells. At its peak, approximately 6.6 log PFU/microl of extracellular Nipah virus RNA was released from the Nipah virus-infected PS cells, with at least a 100-fold less virus RNA was recorded in the Nipah virus-infected SK-N-MC and THP-1. Approximately 15.2% (+/-0.1%) of the released virus from the infected PS cell cultures was infectious in contrast to approximately 5.5% (+/-0.7%) from the infected SK-N-MC cells. The findings suggest that there are no differences in the capacity to support Nipah virus replication between pigs and humans in fully susceptible PS and MRC-5 cells. However, there are differences between these cells and human neuronal cells and monocytes in the ability to support Nipah virus replication and virus release.
    Matched MeSH terms: Nipah Virus/growth & development
  16. Patel JJ, Acharya SR, Acharya NS
    J Ethnopharmacol, 2014 Jun 11;154(2):268-85.
    PMID: 24727551 DOI: 10.1016/j.jep.2014.03.071
    Clerodendrum serratum (L.) Moon. (Verbenaceae) is an important medicinal plant growing in the tropical and warm temperate regions like Africa, Southern Asia; Malaysia and distributed throughout in forests of India and Sri Lanka. It is traditionally valued and reported for treating pain, inflammation, rheumatism, respiratory disorders, fever and malarial fever in India with a long history. To provide a comprehensive overview of the traditional and ethno medicinal uses, phytochemistry and biological activities of C. serratum with clinical and toxicity data and possibly make recommendations for further research.
    Matched MeSH terms: Clerodendrum/growth & development
  17. Tirado Y, Puig A, Alvarez N, Borrero R, Aguilar A, Camacho F, et al.
    Tuberculosis (Edinb), 2016 12;101:44-48.
    PMID: 27865396 DOI: 10.1016/j.tube.2016.07.017
    Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb.
    Matched MeSH terms: Mycobacterium tuberculosis/growth & development
  18. Kim M, Kim WS, Tripathi BM, Adams J
    Microb Ecol, 2014 May;67(4):837-48.
    PMID: 24549745 DOI: 10.1007/s00248-014-0380-y
    Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic "plant beneficial" lineages. The differences from the temperate zone in the bacterial community of tropical forest litter may be partly a product of its differing chemistry, although the unvarying climate might also play a role, as might interactions with other organisms such as fungi. The single genus Burkholderia may be seen as potentially playing a major role in decomposition and nutrient cycling in tropical forests, but apparently not in temperate forests.
    Matched MeSH terms: Bacteria/growth & development
  19. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: Arecaceae/growth & development
  20. Oh YM, Kim M, Lee-Cruz L, Lai-Hoe A, Go R, Ainuddin N, et al.
    Microb Ecol, 2012 Nov;64(4):1018-27.
    PMID: 22767122 DOI: 10.1007/s00248-012-0082-2
    It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0-10 cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both tropical forestry and conservation.
    Matched MeSH terms: Coniferophyta/growth & development; Streptophyta/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links