Displaying publications 21 - 40 of 59 in total

Abstract:
Sort:
  1. Amid BT, Mirhosseini H, Kostadinović S
    Chem Cent J, 2012 Oct 14;6(1):117.
    PMID: 23062269 DOI: 10.1186/1752-153X-6-117
    BACKGROUND: The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS) was applied to analyze the molecular weight (Mw), number average molecular weight (Mn), and polydispersity index (Mw/Mn).

    RESULTS: The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%), glucose (37.1-45.1%), arabinose (0.58-3.41%), and xylose (0.3-3.21%). The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:2). The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%), lysine (6.04-8.36%), aspartic acid (6.10-7.19%), glycine (6.07-7.42%), alanine (5.24-6.14%), glutamic acid (5.57-7.09%), valine (4.5-5.50%), proline (3.87-4.81%), serine (4.39-5.18%), threonine (3.44-6.50%), isoleucine (3.30-4.07%), and phenylalanine (3.11-9.04%).

    CONCLUSION: The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

    Matched MeSH terms: Lysine
  2. Tan, T.C., Abbas, F.M.A., Azhar, M.E.
    MyJurnal
    The addition of ribose to minced chicken or minced pork followed by heating at 95oC yielded minced
    meat with different pH, colour (CIE L*, b*) and absorbance values that can be used as indicators for species differentiation. The higher intensity of the Maillard reaction parameters in minced chicken was due to the higher protein and lysine contents, and the presence of more water-soluble proteins within the minced chicken during heating. Cluster analysis using Maillard reaction parameters showed that the two types of minced meat could be classified into two different groups. A confidence interval (95% confidence) analysis revealed that the absorbance, CIE L* values, and CIE b* values could be used as indicators for differentiation between the two types of minced meat, as the intervals between these Maillard reaction parameters for the two minced meats were far apart.
    Matched MeSH terms: Lysine
  3. Ng ZX, Kuppusamy UR, Iqbal T, Chua KH
    Gene, 2013 Jun 1;521(2):227-33.
    PMID: 23545311 DOI: 10.1016/j.gene.2013.03.062
    Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.
    Matched MeSH terms: Lysine/analogs & derivatives; Lysine/genetics; Lysine/metabolism
  4. Ng ZX, Chua KH, Iqbal T, Kuppusamy UR
    Int J Mol Sci, 2013;14(4):7480-91.
    PMID: 23552832 DOI: 10.3390/ijms14047480
    This study aims to investigate potential diabetic retinopathy (DR) risk factors by evaluating the circulating levels of pentosidine, soluble receptor for advanced glycation end-product (sRAGE), advanced oxidation protein product (AOPP) as well as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities in DR patients. A total of 235 healthy controls, 171 type 2 diabetic without retinopathy (DNR) and 200 diabetic retinopathy (DR) patients were recruited. Plasma was extracted for the estimation of pentosidine, sRAGE, AOPP levels and GPx activity whereas peripheral blood mononuclear cells were disrupted for SOD activity measurement. DNR and DR patients showed significantly higher levels of plasma pentosidine, sRAGE and AOPP but lower GPx and SOD activities when compared to healthy controls. The sRAGE/pentosidine ratio in DR patients was significantly lower than the ratio detected in DNR patients. Proliferative DR patients had significantly higher levels of plasma pentosidine, sRAGE, AOPP and sRAGE/pentosidine ratio than non-proliferative DR patients. High HbA1c level, long duration of diabetes and low sRAGE/pentosidine ratio were determined as the risk factors for DR. This study suggests that sRAGE/pentosidine ratio could serve as a risk factor determinant for type 2 DR as it has a positive correlation with the severity of DR.
    Matched MeSH terms: Lysine/analogs & derivatives*; Lysine/blood
  5. Siddique, M.A.M., Khan, M.S.K., Bhuiyan, M.K.A.
    MyJurnal
    Nutritional fact study has prime importance to make the species edible and commercially viable to the food consumers. The proximate chemical composition and amino acid profile of Gelidium pusillum were studied to understand the nutritional status. The red seaweed Gelidium pusillum was rich in dietary fibre (24.74 ± 1.05%), lipid (2.16 ± 0.61%) and ash content (21.15 ± 0.74%). The mean protein content (11.31 ± 1.02% DW) was within the range of 10-47% for green and red seaweeds and this range was higher than Gracilaria cornea (5.47% DW), Gracilaria changgi (6.90% DW) and Eucheuma cottonii (9.76% DW). Gelidium pusillum was found to contained all the essential amino acids, which accounted for 52.08% of the total amino acids. Tyrosine (26.2 mg g-1 protein), methionine (15.8 mg g-1 protein) and Lysine (48.3 mg g-1 protein) were the limiting amino acid of Gelidium pusillum. However, the levels of other essential amino acids were above the FAO/WHO requirement pattern (EAA score ranged from 1.14 to 1.62). Aspartic and glutamic acids constituted a substantial amount of the total amino acids (24.68% of total amino acid). The result from this study suggested that Gelidium pusillum could be utilized as a healthy food item for human consumption.
    Matched MeSH terms: Lysine
  6. Amiza, M.A., Ow, Y.W., Faazaz, A.L.
    MyJurnal
    The physicochemical properties of silver catfish frame hydrolysate powder at three different degree of hydrolysis, DH43%, DH 55% and DH 68% were studied. The hydrolysates powder were obtained by hydrolysis using Alcalase®, centrifugation and spray drying of the supernatant. The study found that preparation of these hydrolysates affected the protein, ash and fat content as well as amino acid composition. As for essential amino acids, their values were generally considered as adequate as compared to the suggested essential amino acids profile of FAO/WHO. The results showed that SFHs were rich in lysine and glutamate. Hydrolysate at DH 68% exhibited better peptide solubility and water holding capacity. As degree of hydrolysis increased, emulsifying capacity and foaming capacity of the hydrolysate decreased. It was also found that the lightness in hydrolysate powder decreased with increase in degree of hydrolysis. This study shows that silver catfish frame hydrolysate has good solubility, good foaming properties and light colour profile, thus having high potential as food ingredient.
    Matched MeSH terms: Lysine
  7. Ghassem M, Fern SS, Said M, Ali ZM, Ibrahim S, Babji AS
    J Food Sci Technol, 2014 Mar;51(3):467-75.
    PMID: 24587521 DOI: 10.1007/s13197-011-0526-6
    This study was conducted to evaluate the kinetic characteristics of proteolytic activity of proteases on Channa striatus protein fractions. Degree of hydrolysis (DH), amino acid composition and kinetic parameters of sarcoplasmic and myofibrillar proteins were investigated when incubated with proteinase K and thermolysin, separately. After 30 min incubation with proteases, a decrease in DH of sarcoplasmic protein was observed whereas, hydrolysis of myofibrillar protein with proteases took 2 h with an increase in DH. The major amino acids were glutamic acid (16.6%) in thermolysin- myofibrillar hydrolysate followed by aspartic acid (11.1%) in sarcoplasmic protein fraction with no enzyme treatment and lysine (10%) in thermolysin-myofibrillar hydrolysate. The apparent Michaelis constant of proteinase K was lower than thermolysin for both sarcoplasmic and myofibrillar proteins. However, rate of turnover and enzyme efficiency suggested that sarcoplasmic and myofibrillar proteins are suitable substrates for proteinase K and thermolysin hydrolytic reaction, respectively.
    Matched MeSH terms: Lysine
  8. Teoh PL, Sharrocks AD
    Cell Mol Biol Lett, 2014 Jun;19(2):215-32.
    PMID: 24715476 DOI: 10.2478/s11658-014-0190-8
    H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
    Matched MeSH terms: Histone-Lysine N-Methyltransferase/antagonists & inhibitors; Histone-Lysine N-Methyltransferase/genetics; Histone-Lysine N-Methyltransferase/metabolism*
  9. Triassi AJ, Wheatley MS, Savka MA, Gan HM, Dobson RC, Hudson AO
    Front Microbiol, 2014;5:509.
    PMID: 25309529 DOI: 10.3389/fmicb.2014.00509
    Despite the urgent need for sustained development of novel antibacterial compounds to combat the drastic rise in antibiotic resistant and emerging bacterial infections, only a few clinically relevant antibacterial drugs have been recently developed. One of the bottlenecks impeding the development of novel antibacterial compounds is the identification of new enzymatic targets. The nutritionally essential amino acid anabolic pathways, for example lysine biosynthesis, provide an opportunity to explore the development of antibacterial compounds, since human genomes do not possess the genes necessary to synthesize these amino acids de novo. The diaminopimelate (DAP)/lysine (lys) anabolic pathways are attractive targets for antibacterial development since the penultimate lys precursor meso-DAP (m-DAP) is a cross-linking amino acid in the peptidoglycan (PG) cell wall of most Gram-negative bacteria and lys plays a similar role in the PG of most Gram-positive bacteria, in addition to its role as one of the 20 proteogenic amino acids. The L,L-diaminopimelate aminotransferase (DapL) pathway was recently identified as a novel variant of the DAP/lys anabolic pathways. The DapL pathway has been identified in the pathogenic bacteria belonging to the genus; Chlamydia, Leptospira, and Treponema. The dapL gene has been identified in the genomes of 381 or approximately 13% of the 2771 bacteria that have been sequenced, annotated and reposited in the NCBI database, as of May 23, 2014. The narrow distribution of the DapL pathway in the bacterial domain provides an opportunity for the development and or discovery of narrow spectrum antibacterial compounds.
    Matched MeSH terms: Lysine
  10. Loh SW, Ng WL, Yeo KS, Lim YY, Ea CK
    PLoS One, 2014;9(7):e103915.
    PMID: 25079219 DOI: 10.1371/journal.pone.0103915
    H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response.
    Matched MeSH terms: Histone-Lysine N-Methyltransferase/antagonists & inhibitors; Histone-Lysine N-Methyltransferase/metabolism*
  11. Jumardi Roslan, Siti Mazlina Mustapa Kamal, Khairul Faezah Md. Yunos, Norhafizah Abdullah
    Sains Malaysiana, 2014;43:1715-1723.
    Fish protein hydrolysate was prepared from tilapia muscle using commercial Alcalase enzyme. Optimization of enzymatic hydrolysis process for preparing tilapia muscle protein hydrolysates (TMPH) was performed by employing central composite design (CCD) method of response surface methodology (RSM). O-phtaldialdehyde (OPA) method was employed to calculate the degree of hydrolysis (DH), which is the key parameter for monitoring the reaction of protein hydrolysis. The suggested model equation was proposed based on the effects of pH, temperature, substrate concentration and enzyme concentration on the DH. Optimum enzymatic hydrolysis conditions using Alcalase enzyme were obtained at pH7.5, temperature of 50oC, substrate concentration of 2.5% and enzyme concentration of 4.0%. Under these conditions, the highest value of the DH was achieved at 25.16% after hydrolysing at 120 min. The TMPH was further assessed for their nutritional value with respect to chemical and amino acid compositions. Molecular weight distributions of TMPH were characterized by SDS-PAGE. TMPH contains moderate amount of protein (28.14%) and good nutritive value with respect to the higher total amino acid composition (267.57 mg/g). Glutamic acid, aspartic acid and lysine were the most abundant amino acids present in TMPH with values 42.68, 29.16 and 26.21 mg/g, respectively. Protein hydrolysates from tilapia muscle containing a desirable peptide with low molecular weight which may potentially to be used as functional food products.
    Matched MeSH terms: Lysine
  12. Ng S, Lasekan O, Muhammad KS, Hussain N, Sulaiman R
    J Food Sci Technol, 2015 Oct;52(10):6623-30.
    PMID: 26396409 DOI: 10.1007/s13197-015-1737-z
    The seeds of Terminalia catappa from Malaysia were analyzed for their physicochemical properties. The following values were obtained: moisture 6.23 ± 0.09 %, ash 3.78 ± 0.04 %, lipid 54.68 ± 0.14 %, protein 17.66 ± 0.13 %, total dietary fibre 9.97 ± 0.08 %, carbohydrate 7.68 ± 0.06 %, reducing sugar 1.36 ± 0.16 %, starch 1.22 ± 0.15 %, caloric value 593.48 ± 0.24 %. Studies were also conducted on amino acid profile and free fatty acid composition of the seed oil. Results revealed that glutamic acid was the major essential amino acid while methionine and lysine were the limiting amino acids. The major saturated fatty acid was palmitic acid, while the main unsaturated fatty acid was oleic acid followed by linoleic acid. In addition, the seed was rich in sucrose and had trace amount of glucose and fructose. Briefly, the seed was high in proteins and lipids which are beneficial to human.
    Matched MeSH terms: Lysine
  13. Mahazar, N. H., Sufian, N. F., Meor Hussin, A. S., Norhayati, H., Mathawan, M., Rukayadi, Y.
    MyJurnal
    Two cocoa bean fermentation methods (spontaneous fermentation and the use of starter culture) for 7 days fermentation were compared in terms of safety and quality fermented beans. Candida sp. was used as a starter culture in this study. The safety of the fermented cocoa beans were measured by the growth colonies of pathogenic microorganisms namely Bacillus cereus, Escherichia coli, Salmonella sp., Staphylococcus aureus, and Pseudomonas sp., on Bacillus cereus agar, eosin-methylene blue (EMB) agar, xylose lysine deoxycholate (XLD) agar, Baird-Parker agar (BPA), and Pseudomonas agar, respectively. B. cereus, E. coli and Salmonella sp. were early present in both fermentations. Candida sp.-fermentation showed detection of B. cereus at 5.34 log10 CFU/g and absence after 24 hours of fermentation while in spontaneous-fermentation B. cereus was too few to count. Moreover, the log10 E. coli number in Candida sp.-fermentation and spontaneous-fermentation were reduced from 5.72 to 3.66 and from 7.15 to 4.46 on day 1 to day 3, respectively. There were no presences of pathogenic microorganisms on day 5 and day 7 for both fermentations. In term of quality, proximate analysis of spontaneous-fermentation resulted that the content of moisture, ash, fat, crude protein, crude fibre and carbohydrate was 56.47%, 2.32%, 3.17%, 7.02%, 28.14% and 2.88%, meanwhile for the Candida sp.-fermentation was 53.96%, 2.19%, 3.44%, 8.25%, 25.46% and 6.70%, respectively. This study showed that both fermentations are considered to be safe and there is no significant difference in proximate value in fermented cocoa beans from spontaneous-fermentation and Candida sp.-fermentation.
    Matched MeSH terms: Lysine
  14. Mohd Redzwan S, Abd Mutalib MS, Wang JS, Ahmad Z, Kang MS, Abdul Rahman N', et al.
    Br J Nutr, 2016 Jan 14;115(1):39-54.
    PMID: 26490018 DOI: 10.1017/S0007114515004109
    Human exposure to aflatoxin is through the diet, and probiotics are able to bind aflatoxin and prevent its absorption in the small intestine. This study aimed to determine the effectiveness of a fermented milk drink containing Lactobacillus casei Shirota (LcS) (probiotic drink) to prevent aflatoxin absorption and reduce serum aflatoxin B1-lysine adduct (AFB1-lys) and urinary aflatoxin M1 concentrations. The present study was a randomised, double-blind, cross-over, placebo-controlled study with two 4-week intervention phases. In all, seventy-one subjects recruited from the screening stage were divided into two groups--the Yellow group and the Blue group. In the 1st phase, one group received probiotic drinks twice a day and the other group received placebo drinks. Blood and urine samples were collected at baseline, 2nd and 4th week of the intervention. After a 2-week wash-out period, the treatments were switched between the groups, and blood and urine samples were collected at the 6th, 8th and 10th week (2nd phase) of the intervention. No significant differences in aflatoxin biomarker concentrations were observed during the intervention. A within-group analysis was further carried out. Aflatoxin biomarker concentrations were not significantly different in the Yellow group. Nevertheless, ANOVA for repeated measurements indicated that AFB1-lys concentrations were significantly different (P=0·035) with the probiotic intervention in the Blue group. The 2nd week AFB1-lys concentrations (5·14 (SD 2·15) pg/mg albumin (ALB)) were significantly reduced (P=0·048) compared with the baseline (6·24 (SD 3·42) pg/mg ALB). Besides, the 4th week AFB1-lys concentrations were significantly lower (P<0·05) with probiotic supplementation than with the placebo. Based on these findings, a longer intervention study is warranted to investigate the effects of continuous LcS consumption to prevent dietary aflatoxin exposure.
    Matched MeSH terms: Lysine/blood
  15. Akit H, Collins C, Fahri F, Hung A, D'Souza D, Leury B, et al.
    Animals (Basel), 2016;6(6).
    PMID: 27338483 DOI: 10.3390/ani6060038
    The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression ( p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated ( p = 0.056), indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.
    Matched MeSH terms: Protein-Lysine 6-Oxidase
  16. Lee KH, Ng YP, Cheah PS, Lim CK, Toh MS
    Br J Dermatol, 2017 Jan;176(1):159-167.
    PMID: 27363533 DOI: 10.1111/bjd.14832
    BACKGROUND: Glycation is a nonenzymatic reaction that cross-links a sugar molecule and protein macromolecule to form advanced glycation products (AGEs) that are associated with various age-related disorders; thus glycation plays an important role in skin chronological ageing.

    OBJECTIVES: To develop a novel in vitro skin glycation model as a screening tool for topical formulations with antiglycation properties and to further characterize, at the molecular level, the glycation stress-driven skin ageing mechanism.

    METHODS: The glycation model was developed using human reconstituted full-thickness skin; the presence of N(ε) -(carboxymethyl) lysine (CML) was used as evidence of the degree of glycation. Topical application of emulsion containing a well-known antiglycation compound (aminoguanidine) was used to verify the sensitivity and robustness of the model. Cytokine immunoassay, quantitative real-time polymerase chain reaction and histological analysis were further implemented to characterize the molecular mechanisms of skin ageing in the skin glycation model.

    RESULTS: Transcriptomic and cytokine profiling analyses in the skin glycation model demonstrated multiple biological changes, including extracellular matrix catabolism, skin barrier function impairment, oxidative stress and subsequently the inflammatory response. Darkness and yellowness of skin tone observed in the in vitro skin glycation model correlated well with the degree of glycation stress.

    CONCLUSIONS: The newly developed skin glycation model in this study has provided a new technological dimension in screening antiglycation properties of topical pharmaceutical or cosmeceutical formulations. This study concomitantly provides insights into skin ageing mechanisms driven by glycation stress, which could be useful in formulating skin antiageing therapy in future studies.

    Matched MeSH terms: Lysine/analogs & derivatives; Lysine/metabolism
  17. Lee SW, Wendy W
    Vet World, 2017 Jul;10(7):803-807.
    PMID: 28831226 DOI: 10.14202/vetworld.2017.803-807
    AIM: The aim of this study is to identify antibiogram and heavy metal resistance pattern of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile aeromonas septicemia and edwardsiellosis in four commercial fish farms.

    MATERIALS AND METHODS: A. hydrophila and E. tarda were isolated using glutamate starch phenol red and xylose lysine deoxycholate (Merck, Germany) as a selective medium, respectively. All the suspected bacterial colonies were identified using conventional biochemical tests and commercial identification kit (BBL Crystal, USA). Susceptibility testing of present bacterial isolates to 16 types of antibiotics (nalidixic acid, oxolinic acid, compound sulfonamides, doxycycline, tetracycline, novobiocin, chloramphenicol, kanamycin, sulfamethoxazole, flumequine, erythromycin, ampicillin, spiramycin, oxytetracycline, amoxicillin, and fosfomycin) and four types of heavy metals (mercury, chromium, copper, and zinc) were carried out using disk diffusion and two-fold agar dilution method, respectively.

    RESULTS: Three hundred isolates of A. hydrophila and E. tarda were successfully identified by biochemical tests. Antibiotic susceptibility testing results showed that 42.2% of the bacterial isolates were sensitive to compound sulfonamides, sulfamethoxazole, flumequine, oxytetracycline, doxycycline, and oxolinic acid. On the other hand, 41.6% of these isolates were resistant to novobiocin, ampicillin, spiramycin, and chloramphenicol, which resulted for multiple antibiotic resistance index values 0.416. Among tested heavy metals, bacterial isolates exhibited resistant pattern of Zn(2+) > Cr(6+) > Cu(2+) > Hg(2+).

    CONCLUSION: Results from this study indicated that A. hydrophila and E. tarda isolated from coinfected farmed red hybrid tilapia were multi-resistant to antibiotics and heavy metals. These resistant profiles could be useful information to fish farmers to avoid unnecessary use of antimicrobial products in the health management of farmed red hybrid tilapia.

    Matched MeSH terms: Lysine
  18. Abdullahi, U.F., Igwenagu, E., Aliyu, S., Mu’azu, A., Naim, R., Wan-Taib, W.R.
    MyJurnal
    This study describes the development of a rapid and sensitive Loop-mediated isothermal
    amplification assay for detection of swine DNA in adulterated meat and meat products. The
    need to protect consumer’s right to eat foods of their choices, has made it imperative for
    researchers to develop efficient means of screening and certification of food products. Six sets
    of LAMP primers designed based on porcine tRNA lysine gene and ATPase subunit 8 genes
    were used for the assay. Amplification was carried out under constant temperature (630C), using
    a simple laboratory water bath. Average time spent in amplification and detection of results was
    25 min. All results were visually detected and confirmed by electrophoresis. Detection limit of
    the assay was 0.03 femtogram (fg) much high than the PCR assay, and detection probability of
    the assay was 100%. Detection of 0.5% of pork spiked with 99.5% of cattle beef is indicative
    of the sensitivity and robustness of the assay. This could serve as a prototype for development
    of a sensitive and inexpensive Swine DNA LAMP detection kit.
    Matched MeSH terms: Lysine
  19. Azizan KA, Ressom HW, Mendoza ER, Baharum SN
    PeerJ, 2017;5:e3451.
    PMID: 28695065 DOI: 10.7717/peerj.3451
    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of how L. lactis regulates central metabolism under various conditions.
    Matched MeSH terms: Lysine
  20. Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK
    Sci Rep, 2018 01 12;8(1):586.
    PMID: 29330486 DOI: 10.1038/s41598-017-18938-y
    In this study, Rh2-treated graphene oxide (GO-Rh2), lysine-treated highly porous graphene (Gr-Lys), arginine-treated Gr (Gr-Arg), Rh2-treated Gr-Lys (Gr-Lys-Rh2) and Rh2-treated Gr-Arg (Gr-Arg-Rh2) were synthesized. MTT assay was used for evaluation of cytotoxicity of samples on ovarian cancer (OVCAR3), breast cancer (MDA-MB), Human melanoma (A375) and human mesenchymal stem cells (MSCs) cell lines. The percentage of apoptotic cells was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The hemolysis and blood coagulation activity of nanostructures were performed. Interestingly, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2 were more active against cancer cell lines in comparison with their cytotoxic activity against normal cell lines (MSCs) with IC50 values higher than 100 μg/ml. The results of TUNEL assay indicates a significant increase in the rates of TUNEL positive cells by increasing the concentrations of nanomaterials. Results were also shown that aggregation and changes of RBCs morphology were occurred in the presence of GO, GO-Rh2, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2. Note that all the samples had effect on blood coagulation system, especially on PTT. All nanostrucure act as antitumor drug so that binding of drugs to a nostructures is irresolvable and the whole structure enter to the cell as a drug.
    Matched MeSH terms: Lysine/pharmacology*; Lysine/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links