Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Alam MZ, Muyibi SA, Wahid R
    Bioresour Technol, 2008 Jul;99(11):4709-16.
    PMID: 17981027
    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.
    Matched MeSH terms: Oxygen/metabolism
  2. Aris A, Sharratt PN
    Environ Technol, 2006 Oct;27(10):1153-61.
    PMID: 17144264
    The effect of initial dissolved oxygen concentration (IDOC) on Fenton's reagent degradation of a dyestuff, Reactive Black 5 was explored in this study. The study was designed, conducted and analysed based on Central Composite Rotatable Design using a 3-1 lab-scale reactor. The participation of O2 in the process was experimentally observed and appears to be affected by the dosage of the reagents used in the study. The IDOC was found to have a significant influence on the process. Reducing the IDOC from 7.5 mg l(-1) to 2.5 mg l(-1) increased the removal of TOC by an average of about 10%. Reduction of IDOC from 10 mg l(-1) to 0 mg l(-1) enhanced the TOC removal by about 30%. The negative influence of IDOC is likely to be caused by the competition between the O2 and the reagents for the organoradicals. A model describing the relationship between initial TOC removal, reagent dosage and IDOC has also been developed.
    Matched MeSH terms: Oxygen/metabolism
  3. Vijayaraghavan K, Ahmad D, Ezani Bin Abdul Aziz M
    J Environ Manage, 2007 Jan;82(1):24-31.
    PMID: 16584834
    In this study treatment of palm oil mill effluent (POME) was investigated using aerobic oxidation based on an activated sludge process. The effects of sludge volume index, scum index and mixed liquor suspended solids during the acclimatizing phase and biomass build-up phase were investigated in order to ascertain the reactor stability. The efficiency of the activated sludge process was evaluated by treating anaerobically digested and diluted raw POME obtained from Golden Hope Plantations, Malaysia. The treatment of POME was carried out at a fixed biomass concentration of 3900+/-200mg/L, whereas the corresponding sludge volume index was found to be around 105+/-5mL/g. The initial studies on the efficiency of the activated sludge reactor were carried out using diluted raw POME for varying the hydraulic retention time, viz: 18, 24, 30 and 36h and influent COD concentration, viz: 1000, 2000, 3000, 4000 and 5000mg/L, respectively. The results showed that at the end of 36h of hydraulic retention time for the above said influent COD, the COD removal efficiencies were found to be 83%, 72%, 64%, 54% and 42% whereas at 24h hydraulic retention time they were 57%, 45%, 38%, 30% and 27%, respectively. The effectiveness of aerobic oxidation was also compared between anaerobically digested and diluted raw POME having corresponding CODs of 3908 and 3925mg/L, for varying hydraulic retention time, viz: 18, 24, 30, 36, 42, 48, 54 and 60h. The dissolved oxygen concentration and pH in the activated sludge reactor were found to be 1.8-2.2mg/L and 7-8.5, respectively. The scum index was found to rise from 0.5% to 1.9% during the acclimatizing phase and biomass build-up phase.
    Matched MeSH terms: Oxygen/metabolism
  4. Lee KM, Lim PE
    Chemosphere, 2005 Jan;58(4):407-16.
    PMID: 15620732
    The role of bioregeneration process in renewing the adsorbent surface for further adsorption of organics during simultaneous adsorption and biodegradation processes has been well recognized. The extent of bioregeneration of powdered activated carbon (PAC) as an adsorbent loaded with phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol, respectively, in the simultaneous adsorption and biodegradation processes were quantitatively determined using oxygen uptake as a measure of substrate consumption. Bioregeneration phenomenon was also evaluated in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing 1200 mg l(-1) phenol and p-methylphenol, respectively. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in the ratio of 4:6:1:0.75:0.25 for a cycle time of 12 h. The results show that the percentage of desorption from loaded PAC decreased in the order phenol>p-methylphenol>p-ethylphenol>p-isopropylphenol. For the treatment of phenol and p-methylphenol in the SBR reactors, respectively, the simultaneous adsorption and biodegradation processes were able to produce a consistent effluent quality of COD < or = 100 mg l(-1) when the applied PAC dosage was 0.115 and 0.143 g PAC per cycle, respectively. When no further PAC was added, the treatment performance deteriorated to that of the case without PAC addition after 68 and 48 cycles of SBR operation, respectively, for phenol and p-methylphenol. This observation is consistent with the greater extent of bioregeneration for phenol-loaded PAC as compared to p-methylphenol-loaded PAC.
    Matched MeSH terms: Oxygen/metabolism
  5. Alam MZ, Fakhru'l-Razi A, Molla AH
    PMID: 15332668
    A laboratory-scale study was undertaken to evaluate the liquid state bioconversion (LSB) in terms of biodegradation of microbially treated domestic wastewater sludge (biosolids) as well as its kinetics. The potential fungal strains and process factors developed from previous studies were used throughout the study. The results presented in this study showed that an effective biodegradation occurred with the biosolids (sludge cake) accumulated. The maximum biosolids (sludge cake) accumulated (93.8 g/kg of liquid sludge) enriched with the biomass protein (30.2 g/kg of dry biosolids), was achieved which improved the effluent quality by enhancing the removal of chemical oxygen demand (COD), reducing sugar (RS), soluble protein (SP), total dissolved solids (TDS), and total suspended solids (TSS). The higher reduction of specific resistance to filtration (SRF) was observed during bioconversion process. The kinetics results showed that the experimental data were better fitted for the biodegradation efficiency, and biosolids accumulation and biodegradation rate.
    Matched MeSH terms: Oxygen/metabolism
  6. Ismail BS, Eng OK, Tayeb MA
    PLoS One, 2015;10(10):e0138170.
    PMID: 26437264 DOI: 10.1371/journal.pone.0138170
    Triazine-2-(14)C metsulfuron-methyl is a selective, systemic sulfonylurea herbicide. Degradation studies in soils are essential for the evaluation of the persistence of pesticides and their breakdown products. The purpose of the present study was to investigate the degradation of triazine-2-(14)C metsulfuron-methyl in soil under laboratory conditions. A High Performance Liquid Chromatograph (HPLC) equipped with an UV detector and an on-line radio-chemical detector, plus a Supelco Discovery column (250 x 4.6 mm, 5 μm), and PRP-1 column (305 x 7.0 mm, 10 μm) was used for the HPLC analysis. The radioactivity was determined by a Liquid Scintillation Counter (LSC) in scintillation fluid. The soil used was both sterilized and non-sterilized in order to observe the involvement of soil microbes. The estimated DT50 and DT90 values of metsulfuron-methyl in a non-sterile system were observed to be 13 and 44 days, whereas in sterilized soil, the DT50 and DT90 were 31 and 70 days, respectively. The principal degradation product after 60 days was CO2. The higher cumulative amount of (14)CO2 in (14)C-triazine in the non-sterilized soil compared to that in the sterile system suggests that biological degradation by soil micro-organisms significantly contributes to the dissipation of the compound. The major routes of degradation were O-demethylation, sulfonylurea bridge cleavage and the triazine "ring-opened."
    Matched MeSH terms: Oxygen/metabolism
  7. Ariff AB, Rosfarizan M, Sobri MA, Karim MI
    Environ Technol, 2001 Jun;22(6):697-704.
    PMID: 11482390
    Research was undertaken to investigate the treatment of fishery washing water using Bacillus sphaericus, and to recover the spores for subsequent use as bioinsecticide to control the population of mosquitoes. This treatment method could reduce pollution due to organic matter by decreasing the value of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) by about 85% and 92%, respectively. The maximum concentration of spores (83.3 x 10(7) spores ml(-1)) using normal concentration of filtered fishery washing water was only about 27% lower than that obtained in fermentation using 0.25% (w/v) yeast extract. The larvicidal activity of the spores produced in fermentation using fishery washing water to Culex quinquefaciatus, as measured by LD50 after 48 h, was almost the same as the larvicidal activity of spores obtained from fermentation using yeast extract.
    Matched MeSH terms: Oxygen/metabolism
  8. Lim PE, Tay MG, Mak KY, Mohamed N
    Sci Total Environ, 2003 Jan 01;301(1-3):13-21.
    PMID: 12493181
    The objective of this study is to investigate the respective effects of Zn, Pb and Cd as well as the combined effect of Zn, Pb, Cd and Cu on the removal of nitrogen and oxygen demand in constructed wetlands. Four laboratory-scale gravel-filled subsurface-flow constructed wetland units planted with cattails (Typha latifolia) were operated outdoors and fed with primary-treated domestic wastewater at a constant flow rate of 25 ml/min. After 6 months, three of the wetland units were fed with the same type of wastewater spiked with Zn(II), Pb(II) and Cd(II), respectively, at 20, 5 and 1 mg/l for a further 9 months. The remaining unit was fed with the same type of wastewater spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II) at concentrations of 10, 2.5, 0.5 and 5 mg/l, respectively, over the same period. The chemical oxygen demand (COD) and ammoniacal nitrogen (AN) concentrations were monitored at the inlet, outlet and three additional locations along the length of the wetland units to assess the performance of the wetland units at various metal loadings. At the end of the study, all cattail plants were harvested for the determination of total Kjeldahl nitrogen and metal concentrations. The results showed that the COD removal efficiency was practically independent of increasing metal loading or a combination of metal loadings during the duration of the study. In contrast, the AN removal efficiency deteriorated progressively with increasing metal loading. The relative effect of the heavy metals was found to increase in the order: Zn
    Matched MeSH terms: Oxygen/metabolism*
  9. Alam MZ, Fakhru'l-Razi A, Molla AH, Roychoudhury PK
    PMID: 11545349
    This study was conducted to evaluate the effect of an eminent decay fungus, Phanerocheate chrysosporium of organic residues on wastewater sludge for its improvement through decomposition and separation of waste particles by Liquid State Bioconversion (LSB). The effect of fungal treatment was compared to uninoculated (Control) at three different harvests 7, 14 and 21 days after inoculation (DAI). The observed results showed that the weight loss and solid content of wastewater sludge were significantly influenced by Phanerocheate chrysosporium. Both parameters were highly influenced at 7 DAI. The COD and pH of wastewater sludge were also highly influenced by fungal treatment.
    Matched MeSH terms: Oxygen/metabolism
  10. Alam MZ, Fakhru'l-Razi A
    PMID: 12090282
    Effects of agitation and aeration rate on microbial treatment of domestic wastewater sludge were investigated in a batch fermenter using mixed culture of Penicillium corylophilum and Aspergillus niger. It was found that liquid state bioconversion (LSB) of wastewater sludge was highly influenced by the effects of agitation and aeration. The maximum production of sludge cake and reduction of organic substances in treated sludge were recorded at 150-200 rpm of agitation speed and 0.5 vvm of aeration rate after 72 h of treatment. No effective results were observed at higher rate of agitation (300 rpm) and aeration (1.5 vvm) as compared to optimum values. The results showed that the minimum level of air saturation (pO2) was adequate to maintain the bioconversion process.
    Matched MeSH terms: Oxygen/metabolism
  11. Ong SA, Lim PE, Seng CE
    Ann Chim, 2004 Jan-Feb;94(1-2):85-92.
    PMID: 15141467
    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.
    Matched MeSH terms: Oxygen/metabolism
  12. Ong SA, Lim PE, Seng CE
    J Hazard Mater, 2003 Oct 31;103(3):263-77.
    PMID: 14573344
    Wastewater treatment systems employing simultaneous adsorption and biodegradation processes have proven to be effective in treating toxic pollutants present in industrial wastewater. The objective of this study is to evaluate the effect of Cu(II) and the efficacy of the powdered activated carbon (PAC) and activated rice husk (ARH) in reducing the toxic effect of Cu(II) on the activated sludge microorganisms. The ARH was prepared by treatment with concentrated nitric acid for 15 h at 60-65 degrees C. The sequencing batch reactor (SBR) systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the ratio of 0.5:3.5:1:0.75:0.25 for a cycle time of 6 h. The Cu(II) and COD removal efficiency were 90 and 85%, respectively, in the SBR system containing 10 mg/l Cu(II) with the addition of 143 mg/l PAC or 1.0 g PAC per cycle. In the case of 715 mg/l ARH or 5.0 g ARH per cycle addition, the Cu(II) and COD removal efficiency were 85 and 92%, respectively. ARH can be used as an alternate adsorbent to PAC in the simultaneous adsorption and biodegradation wastewater treatment process for the removal of Cu(II). The specific oxygen uptake rate (SOUR) and kinetic studies show that the addition of PAC and ARH reduce the toxic effect of Cu(II) on the activated sludge microorganisms.
    Matched MeSH terms: Oxygen/metabolism
  13. Alam MZ, Kabbashi NA, Hussin SN
    J Ind Microbiol Biotechnol, 2009 Jun;36(6):801-8.
    PMID: 19294441 DOI: 10.1007/s10295-009-0554-7
    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.
    Matched MeSH terms: Oxygen/metabolism
  14. Dadrasnia A, Azirun MS, Ismail SB
    BMC Biotechnol, 2017 Nov 28;17(1):85.
    PMID: 29179747 DOI: 10.1186/s12896-017-0395-9
    BACKGROUND: When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH.

    RESULTS: Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH3-N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI.

    CONCLUSIONS: Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH3-N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.

    Matched MeSH terms: Oxygen/metabolism
  15. Martin TE, Ton R, Niklison A
    Ecol Lett, 2013 Jun;16(6):738-45.
    PMID: 23473270 DOI: 10.1111/ele.12103
    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.
    Matched MeSH terms: Oxygen/metabolism
  16. Zahari M, Lee DS, Darlow BA
    J Clin Monit Comput, 2016 Oct;30(5):669-78.
    PMID: 26282827 DOI: 10.1007/s10877-015-9752-1
    The displayed readings of Masimo pulse oximeters used in the Benefits Of Oxygen Saturation Targeting (BOOST) II and related trials in very preterm babies were influenced by trial-imposed offsets and an artefact in the calibration software. A study was undertaken to implement new algorithms that eliminate the effects of offsets and artefact. In the BOOST-New Zealand trial, oxygen saturations were averaged and stored every 10 s up to 36 weeks' post-menstrual age. Two-hundred and fifty-seven of 340 babies enrolled in the trial had at least two weeks of stored data. Oxygen saturation distribution patterns corresponding with a +3 % or -3 % offset in the 85-95 % range were identified together with that due to the calibration artefact. Algorithms involving linear and quadratic interpolations were developed, implemented on each baby of the dataset and validated using the data of a UK preterm baby, as recorded from Masimo oximeters with the original software and a non-offset Siemens oximeter. Saturation distributions obtained were compared for both groups. There were a flat region at saturations 85-87 % and a peak at 96 % from the lower saturation target oximeters, and at 93-95 and 84 % respectively from the higher saturation target oximeters. The algorithms lowered the peaks and redistributed the accumulated frequencies to the flat regions and artefact at 87-90 %. The resulting distributions were very close to those obtained from the Siemens oximeter. The artefact and offsets of the Masimo oximeter's software had been addressed to determine the true saturation readings through the use of novel algorithms. The implementation would enable New Zealand data be included in the meta-analysis of BOOST II trials, and be used in neonatal oxygen studies.
    Matched MeSH terms: Oxygen/metabolism
  17. Mohammed A, Abdul-Wahab MF, Hashim M, Omar AH, Md Reba MN, Muhamad Said MF, et al.
    Pol J Microbiol, 2018 11 20;67(3):283-290.
    PMID: 30451444 DOI: 10.21307/pjm-2018-033
    Lower temperature biohydrogen production has always been attractive, due to the lower energy requirements. However, the slow metabolic rate of psychrotolerant biohydrogen-producing bacteria is a common problem that affects their biohydrogen yield. This study reports on the improved substrate synthesis and biohydrogen productivity by the psychrotolerant Klebsiella sp. strain ABZ11, isolated from Antarctic seawater sample. The isolate was screened for biohydrogen production at 30°C, under facultative anaerobic condition. The isolate is able to ferment glucose, fructose and sucrose with biohydrogen production rate and yield of 0.8 mol/l/h and 3.8 mol/g, respectively at 10 g/l glucose concentration. It also showed 74% carbohydrate uptake and 95% oxygen uptake ability, and a wide growth temperature range with optimum at 37°C. Klebsiella sp. ABZ11 has a short biohydrogen production lag phase, fast substrate uptake and is able to tolerate the presence of oxygen in the culture medium. Thus, the isolate has a potential to be used for lower temperature biohydrogen production process.
    Matched MeSH terms: Oxygen/metabolism
  18. Lim PE, Wong TF, Lim DV
    Environ Int, 2001 May;26(5-6):425-31.
    PMID: 11392762
    This study was conducted to: (1) assess the role of wetland vegetation in the removal of oxygen demand and nitrogen under tropical conditions, (2) estimate the uptake of nitrogen and copper by wetland plants and (3) investigate the speciation of Cu in wetland media among four operationally defined host fractions, namely exchangeable, carbonate, reducible and organically bound. Four laboratory-scale wetland units, two free-water-surface (FWS) and two subsurface-flow (SF) with one of each planted with cattails (Typha augustifolia), were fed with primary-treated sewage and operated at nominal retention times of 0.6-7 days. The influent and effluent BOD/COD and nitrogen concentrations were monitored to assess the performance of the wetland units for various mass loading rates. At the end of the study, all cattail plants were harvested and analyzed for total Kjeldahl nitrogen (TKN). Four other wetland units, which were identical to the first four, were fed with domestic wastewater spiked with copper in increasing concentrations. Copper speciation patterns in the sand layer were determined at the end of the study. The results showed that wetland vegetation did not play an important role in oxygen demand removal but were capable of removing about 22% and 26% of the nitrogen input in the FWS and SF wetland units, respectively. Mass balance analysis indicated that less than 1% of copper introduced was taken up by the cattails. Copper speciation patterns in the sand media showed that the exchangeable fraction contributed 30-57% and 63-80% of the nonresidual copper in the planted and unplanted FWS wetlands, respectively. For SF units, the percentages were 52-62% and 59-67%, respectively. This indicates that large amount of copper in the media were potentially remobilizable.
    Matched MeSH terms: Oxygen/metabolism*
  19. Citartan M, Gopinath SCB, Chen Y, Lakshmipriya T, Tang TH
    Biosens Bioelectron, 2015 Jan 15;63:86-98.
    PMID: 25058943 DOI: 10.1016/j.bios.2014.06.068
    The illegal administration of recombinant human erythropoietin (rHuEPO) among athletes is largely preferred over blood doping to enhance stamina. The advent of recombinant DNA technology allowed the expression of EPO-encoding genes in several eukaryotic hosts to produce rHuEPO, and today these performance-enhancing drugs are readily available. As a mimetic of endogenous EPO (eEPO), rHuEPO augments the oxygen carrying capacity of blood. Thus, monitoring the illicit use of rHuEPO among athletes is crucial in ensuring an even playing field and maintaining the welfare of athletes. A number of rHuEPO detection methods currently exist, including measurement of hematologic parameters, gene-based detection methods, glycomics, use of peptide markers, electrophoresis, isoelectric focusing (IEF)-double immunoblotting, aptamer/antibody-based methods, and lateral flow tests. This review gleans these different strategies and highlights the leading molecular recognition elements that have potential roles in rHuEPO doping detection.
    Matched MeSH terms: Oxygen/metabolism
  20. Haque N, Rahman MT, Abu Kasim NH, Alabsi AM
    ScientificWorldJournal, 2013;2013:632972.
    PMID: 24068884 DOI: 10.1155/2013/632972
    Cell-based regenerative therapies, based on in vitro propagation of stem cells, offer tremendous hope to many individuals suffering from degenerative diseases that were previously deemed untreatable. Due to the self-renewal capacity, multilineage potential, and immunosuppressive property, mesenchymal stem cells (MSCs) are considered as an attractive source of stem cells for regenerative therapies. However, poor growth kinetics, early senescence, and genetic instability during in vitro expansion and poor engraftment after transplantation are considered to be among the major disadvantages of MSC-based regenerative therapies. A number of complex inter- and intracellular interactive signaling systems control growth, multiplication, and differentiation of MSCs in their niche. Common laboratory conditions for stem cell culture involve ambient O₂ concentration (20%) in contrast to their niche where they usually reside in 2-9% O₂. Notably, O₂ plays an important role in maintaining stem cell fate in terms of proliferation and differentiation, by regulating hypoxia-inducible factor-1 (HIF-1) mediated expression of different genes. This paper aims to describe and compare the role of normoxia (20% O₂) and hypoxia (2-9% O₂) on the biology of MSCs. Finally it is concluded that a hypoxic environment can greatly improve growth kinetics, genetic stability, and expression of chemokine receptors during in vitro expansion and eventually can increase efficiency of MSC-based regenerative therapies.
    Matched MeSH terms: Oxygen/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links