Displaying publications 381 - 400 of 523 in total

Abstract:
Sort:
  1. Tan BH, Pan Y, Dong AN, Ong CE
    J Pharm Pharm Sci, 2017;20(1):319-328.
    PMID: 29145931 DOI: 10.18433/J3434R
    In vitro and in silico models of drug metabolism are utilized regularly in the drug research and development as tools for assessing pharmacokinetic variability and drug-drug interaction risk. The use of in vitro and in silico predictive approaches offers advantages including guiding rational design of clinical drug-drug interaction studies, minimization of human risk in the clinical trials, as well as cost and time savings due to lesser attrition during compound development process. This article gives a review of some of the current in vitro and in silico methods used to characterize cytochrome P450(CYP)-mediated drug metabolism for estimating pharmacokinetic variability and the magnitude of drug-drug interactions. Examples demonstrating the predictive applicability of specific in vitro and in silico approaches are described. Commonly encountered confounding factors and sources of bias and error in these approaches are presented. With the advent of technological advancement in high throughput screening and computer power, the in vitro and in silico methods are becoming more efficient and reliable and will continue to contribute to the process of drug discovery, development and ultimately safer and more effective pharmacotherapy. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
    Matched MeSH terms: Oxidation-Reduction
  2. Chen YW, Lee HV
    Int J Biol Macromol, 2018 Feb;107(Pt A):78-92.
    PMID: 28860064 DOI: 10.1016/j.ijbiomac.2017.08.143
    In the present work, four types of newly chosen municipal solid wastes (Panax ginseng, spent tea residue, waste cotton cloth, and old corrugated cardboard) were studied as the promising sources for nanocellulose, which has efficiently re-engineered the structure of waste products into highly valuable nanocellulose materials. The nanocellulose was produced directly via a facile one-pot oxidative hydrolysis process by using H2O2/Cr(NO3)3 solution as the bleaching agent and hydrolysis medium under acidic condition. The isolated nanocellulose products were well-characterized in terms of chemical composition, product yield, morphological structure and thermal properties. The study has found that the crystallinity index of the obtained nanocellulose products were significantly higher (62.2-83.6%) than that of its starting material due to the successive elimination of lignin, hemicellulose and amorphous regions of cellulose, which were in good agreement with the FTIR analysis. The evidence of the successful production of nanocellulose was given by TEM observation which has revealed the fibril widths were ranging from 15.6 to 46.2nm, with high cellulose content (>90%), depending on the cellulosic origin. The physicochemical properties of processed samples have confirmed that the isolation of high purity nanocellulose materials from different daily spent products is possible. The comparative study can help to provide a deep insight on the possibility of revalorizing the municipal solid wastes into nanocellulose via the simple and versatile one-pot isolation system, which has high potential to be used in commercial applications for sustainable development.
    Matched MeSH terms: Oxidation-Reduction
  3. Nasir AM, Goh PS, Ismail AF
    Chemosphere, 2018 Jun;200:504-512.
    PMID: 29501887 DOI: 10.1016/j.chemosphere.2018.02.126
    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m2/g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite.
    Matched MeSH terms: Oxidation-Reduction
  4. Jothi L, Neogi S, Jaganathan SK, Nageswaran G
    Biosens Bioelectron, 2018 May 15;105:236-242.
    PMID: 29412948 DOI: 10.1016/j.bios.2018.01.040
    A novel nitrogen/argon (N2/Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N2/Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N2/Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔEP) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N2/Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA.
    Matched MeSH terms: Oxidation-Reduction
  5. Lin CK, Bashir MJ, Abu Amr SS, Sim LC
    Water Sci Technol, 2016 Dec;74(11):2675-2682.
    PMID: 27973372
    The aim of the current study is to evaluate the effectiveness of combined persulphate with hydrogen peroxide (S2O8(2-)/H2O2) oxidation as a post-treatment of biologically treated palm oil mill effluent (POME) for the first time in the literature. The removal efficiencies of chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS) were 36.8%, 47.6%, and 90.6%, respectively, by S2O8(2-) oxidation alone under certain operation conditions (i.e., S2O8(2-) = 0.82 g, pH 11, and contact time 20 min). Nevertheless, the combined process (S2O8(2-)/H2O2) achieved 75.8% and 87.1% removals of NH3-N and SS, respectively, under 2.45/1.63 g/g H2O2/S2O8(2-), pH 11, and 20 min oxidation. Moreover, 56.9% of COD was removed at pH 8.4.
    Matched MeSH terms: Oxidation-Reduction
  6. Geetha Bai R, Muthoosamy K, Shipton FN, Manickam S
    Ultrason Sonochem, 2017 May;36:129-138.
    PMID: 28069192 DOI: 10.1016/j.ultsonch.2016.11.021
    Graphene is one of the highly explored nanomaterials due to its unique and extraordinary properties. In this study, by utilizing a hydrothermal reduction method, graphene oxide (GO) was successfully converted to reduced graphene oxide (RGO) without using any toxic reducing agents. Following this, with the use of ultrasonic cavitation, profoundly stable few layer thick RGO nanodispersion was generated without employing any stabilizers or surfactants. During ultrasonication, shockwaves from the collapse of bubbles cause a higher dispersing energy to the graphene nanosheets which surpass the forces of Van der Waal's and π-π stacking and thus pave the way to form a stable aqueous nanodispersion of graphene. Ultrasonication systems with different power intensity have been employed to determine the optimum conditions for obtaining the most stable RGO dispersion. The optimised conditions of ultrasonic treatments led to the development of a very stable reduced graphene oxide (RGO) aqueous dispersion. The stability was observed for two years and was analyzed by using Zetasizer by measuring the particle size and zeta potential at regular intervals and found to have exceptional stability. The excellent stability at physiological pH promotes its utilization in nano drug delivery application as a carrier for Paclitaxel (Ptx), an anticancer drug. The in vitro cytotoxicity analysis of Ptx loaded RGO nanodispersion by MTT assay performed on the cell lines revealed the potential of the nanodispersion as a suitable drug carrier. Studies on normal lung cells, MRC-5 and nasopharyngeal cancer cells, HK-1 supported the biocompatibility of RGO-Ptx towards normal cell line. This investigation shows the potential of exceptionally stable RGO-Ptx nanodispersion in nano drug delivery applications.
    Matched MeSH terms: Oxidation-Reduction
  7. Sunasee S, Leong KH, Wong KT, Lee G, Pichiah S, Nah I, et al.
    Environ Sci Pollut Res Int, 2019 Jan;26(2):1082-1093.
    PMID: 28290089 DOI: 10.1007/s11356-017-8729-7
    Since bisphenol A (BPA) exhibits endocrine disrupting action and high toxicity in aqueous system, there are high demands to remove it completely. In this study, the BPA removal by sonophotocatalysis coupled with nano-structured graphitic carbon nitride (g-C3N4, GCN) was conducted with various batch tests using energy-based advanced oxidation process (AOP) based on ultrasound (US) and visible light (Vis-L). Results of batch tests indicated that GCN-based sonophotocatalysis (Vis-L/US) had higher rate constants than other AOPs and especially two times higher degradation rate than TiO2-based Vis-L/US. This result infers that GCN is effective in the catalytic activity in Vis-L/US since its surface can be activated by Vis-L to transport electrons from valence band (VB) for utilizing holes (h+VB) in the removal of BPA. In addition, US irradiation exfoliated the GCN effectively. The formation of BPA intermediates was investigated in detail by using high-performance liquid chromatography-mass spectrometry (HPLC/MS). The possible degradation pathway of BPA was proposed.
    Matched MeSH terms: Oxidation-Reduction
  8. Adam IK, Heikal M, Aziz ARA, Yusup S
    Environ Sci Pollut Res Int, 2018 Oct;25(28):28500-28516.
    PMID: 30088249 DOI: 10.1007/s11356-018-2863-8
    The present work analyzes the effect of antioxidants on engine combustion performance of a multi-cylinder diesel engine fueled with PB30 and PB50 (30 and 50 vol.% palm biodiesel (PB)). Four antioxidants namely N,N'-diphenyl-1,4-phenylenediamine (DPPD), N-phenyl-1,4-phenylenediamine (NPPD), 2(3)-tert-Butyl-4-methoxyphenol (BHA), and 2-tert-butylbenzene-1,4-diol (TBHQ) were added at concentrations of 1000 and 2000 ppm to PB30 and PB50. TBHQ showed the highest activity in increasing oxidation stability in both PB30 and PB50 followed by BHA, DPPD, and NPPD respectively, without any negative effect on physical properties. Compared to diesel fuel, PB blends showed 4.61-6.45% lower brake power (BP), 5.90-8.69% higher brake specific fuel consumption (BSFC), 9.64-11.43% higher maximum in cylinder pressure, and 7.76-12.51% higher NO emissions. Carbon monoxide (CO), hydrocarbon (HC), and smoke opacity were reduced by 36.78-43.56%, 44.12-58.21%, and 42.59-63.94%, respectively, than diesel fuel. The start of combustion angles (SOC) of PB blends was - 13.2 to - 15.6 °CA BTDC, but the combustion delays were 5.4-7.8 °CA short compared to diesel fuel which were - 10 °CA BTDC and 11°CA respectively. Antioxidant fuels of PB showed higher BP (1.81-5.32%), CO (8.41-24.60%), and HC (13.51-37.35%) with lower BSFC (1.67-7.68%), NO (4.32-11.53%), maximum in cylinder pressure (2.33-4.91%) and peak heat release rates (HRR) (3.25-11.41%) than baseline fuel of PB. Similar SOC of - 13 to - 14 °CA BTDC was observed for PB blended fuels and antioxidants. It can be concluded that antioxidants' addition is effective in increasing the oxidation stability and in controlling the NOx emissions of palm biodiesel fuelled diesel engine.
    Matched MeSH terms: Oxidation-Reduction
  9. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Oxidation-Reduction
  10. Tay KS, Rahman NA, Abas MR
    Environ Sci Pollut Res Int, 2013 May;20(5):3115-21.
    PMID: 23054788 DOI: 10.1007/s11356-012-1223-3
    This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (•OH).
    Matched MeSH terms: Oxidation-Reduction
  11. Isa N, Lockman Z
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11482-11495.
    PMID: 30806934 DOI: 10.1007/s11356-019-04583-7
    Silver nanoparticles (AgNPs) were prepared by reacting Kyllinga brevifolia extract (KBE) with AgNO3 aqueous solution at room temperature (22 ± 3 °C). The phytochemical constituents in KBE responsible for the reduction process were identified as carbohydrate, protein, and plant sterols (stigmasterol and campesterol). KBE was also found to function as a capping agent for stabilization of AgNPs. The AgNPs were stable at room temperature and had a quasi-spherical shape with an average particle size 22.3 nm. The use of KBE offers not only eco-friendly and non-pathogenic path for AgNPs formation, it also induced rapid formation of the AgNPs. Methylene blue (MB) removal was then done on the AgNPs in the presence of either KBE or NaBH4. Ninety-three percent removal of MB was achieved with a rate of reaction 0.2663 min-1 in the solution with KBE+AgNPs (pH 2). However, in NaBH4+AgNPs system, 100% MB removal was achieved at pH 8-10. The reaction rate was 2.5715 min-1 indicating a fast removal rate of MB dye. The process of reduction occurs via electron relay effect whereas in KBE+AgNPs system, sedimentation occurred along with the reduction process. Nevertheless, the use of KBE+AgNPs system is preferred as the reducing agent is more benign to the environment.
    Matched MeSH terms: Oxidation-Reduction
  12. Ekeuku SO, Chin KY, Qian J, Zhang Y, Qu H, Ahmad F, et al.
    Int J Med Sci, 2023;20(13):1711-1721.
    PMID: 37928881 DOI: 10.7150/ijms.84604
    Background: Menopause is accompanied by increased oxidative stress, partly contributing to weight gain and bone marrow adiposity. Traditional Chinese medication, E'Jiao, has been demonstrated to reduce excessive bone remodelling during oestrogen deprivation, but its effects on body composition and bone marrow adiposity during menopause remain elusive. Objective: To determine the effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised (OVX) rats. Methods: Seven groups of three-month-old female Sprague Dawley rats were established (n=6/group): baseline, sham, OVX control, OVX-treated with low, medium or high-dose E'Jiao (0.26, 0.53, 1.06 g/kg, p.o.) or calcium carbonate (1% in tap water, ad libitum). The supplementation was terminated after 8 weeks. Whole-body composition analysis was performed monthly using dual-energy X-ray absorptiometry. Analysis of bone-marrow adipocyte numbers and skeletal antioxidant activities were performed on the femur. Results: Increased total mass, lean mass, and bone marrow adipocyte number were observed in the OVX control versus the sham group. Low-dose E'Jiao supplementation counteracted these changes. Besides, E'Jiao at all doses increased skeletal catalase and superoxide dismutase activities but lowered glutathione levels in the OVX rats. Skeletal malondialdehyde level was not affected by ovariectomy but was lowered with E'Jiao supplementation. However, peroxisome proliferator-activated receptor gamma protein expression was not affected by ovariectomy or any treatment. Conclusion: E'Jiao, especially at the low dose, prevented body composition changes and bone marrow adiposity due to ovariectomy. These changes could be mediated by the antioxidant actions of E'Jiao. It has the potential to be used among postmenopausal women to avoid adiposity.
    Matched MeSH terms: Oxidation-Reduction
  13. De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, Trukhanov A, et al.
    Mediators Inflamm, 2014;2014:924184.
    PMID: 24812443 DOI: 10.1155/2014/924184
    Growing numbers of "electromagnetic hypersensitive" (EHS) people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity (MCS) and/or other environmental "sensitivity-related illnesses" (SRI). This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered (P < 0.05-0.0001) glutathione-(GSH), GSH-peroxidase/S-transferase, and catalase erythrocyte activities. We first described comparable-though milder-metabolic pro-oxidant/proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω 6/ ω 3 ratio was confirmed in MCS, but not in EHS. We also identified significantly (P = 0.003) altered distribution-versus-control of the CYP2C19∗1/∗2 SNP variants in EHS, and a 9.7-fold increased risk (OR: 95% C.I. = 1.3-74.5) of developing EHS for the haplotype (null)GSTT1 + (null)GSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic/genetic biomarkers' panel as suitable diagnostic tool for SRI.
    Matched MeSH terms: Oxidation-Reduction
  14. Cheah PB, Gan SP
    J Food Prot, 2000 Mar;63(3):404-7.
    PMID: 10716573
    The antioxidant and microbial stabilities of galangal (Alpinia galanga) extract in raw minced beef were examined at 4 +/- 1 degree C. Raw minced beef containing galangal extracts (0 to 0.10%, wt/wt) were prepared. Lipid oxidation during refrigerated storage was assessed by monitoring malonaldehyde formation, using the thiobarbituric acid reactive substances method. In minced beef, added galangal extract improved oxidative stability. Galangal extract at higher concentrations of 0.05% and 0.10% (wt/wt) were also found to extend the shelf-life of minced beef. Addition of alpha-tocopherol (0.02%, wt/wt) to galangal extract (0.05%, wt/wt) were observed to increase the oxidative but not the microbial stability of minced beef during the storage of 7 days. Galangal extract may prove useful in inhibiting lipid oxidation and increasing microbial stability of minced meat.
    Matched MeSH terms: Oxidation-Reduction
  15. Ghasemzadeh A, Jaafar HZ
    Int J Mol Sci, 2011 Feb 10;12(2):1101-14.
    PMID: 21541046 DOI: 10.3390/ijms12021101
    The effect of two different CO(2) concentrations (400 and 800 μmol mol(-1)) on the photosynthesis rate, primary and secondary metabolite syntheses and the antioxidant activities of the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. High photosynthesis rate (10.05 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (83.4 g in Halia Bentong) were observed at 800 μmol mol(-1) CO(2). Stomatal conductance decreased and water use efficiency increased with elevated CO(2) concentration. Total flavonoids (TF), total phenolics (TP), total soluble carbohydrates (TSC), starch and plant biomass increased significantly (P ≤ 0.05) in all parts of the ginger varieties under elevated CO(2) (800 μmol mol(-1)). The order of the TF and TP increment in the parts of the plant was rhizomes > stems > leaves. More specifically, Halia Bara had a greater increase of TF (2.05 mg/g dry weight) and TP (14.31 mg/g dry weight) compared to Halia Bentong (TF: 1.42 mg/g dry weight; TP: 9.11 mg/g dry weight) in average over the whole plant. Furthermore, plants with the highest rate of photosynthesis had the highest TSC and phenolics content. Significant differences between treatments and species were observed for TF and TP production. Correlation coefficient showed that TSC and TP content are positively correlated in both varieties. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased in young ginger grown under elevated CO(2). The FRAP values for the leaves, rhizomes and stems extracts of both varieties grown under two different CO(2) concentrations (400 and 800 μmol mol(-1)) were significantly lower than those of vitamin C (3107.28 μmol Fe (II)/g) and α-tocopherol (953 μmol Fe (II)/g), but higher than that of BHT (74.31 μmol Fe (II)/g). These results indicate that the plant biomass, primary and secondary metabolite synthesis, and following that, antioxidant activities of Malaysian young ginger varieties can be enhanced through controlled environment (CE) and CO(2) enrichment.
    Matched MeSH terms: Oxidation-Reduction
  16. Ghasemzadeh A, Jaafar HZ, Karimi E, Ashkani S
    Molecules, 2014 Oct 16;19(10):16693-706.
    PMID: 25325154 DOI: 10.3390/molecules191016693
    The increase of atmospheric CO2 due to global climate change or horticultural practices has direct and indirect effects on food crop quality. One question that needs to be asked, is whether CO2 enrichment affects the nutritional quality of Malaysian young ginger plants. Responses of total carbohydrate, fructose, glucose, sucrose, protein, soluble amino acids and antinutrients to either ambient (400 μmol/mol) and elevated (800 μmol/mol) CO2 treatments were determined in the leaf and rhizome of two ginger varieties namely Halia Bentong and Halia Bara. Increasing of CO2 level from ambient to elevated resulted in increased content of total carbohydrate, sucrose, glucose, and fructose in the leaf and rhizome of ginger varieties. Sucrose was the major sugar followed by glucose and fructose in the leaf and rhizome extract of both varieties. Elevated CO2 resulted in a reduction of total protein content in the leaf (H. Bentong: 38.0%; H. Bara: 35.4%) and rhizome (H. Bentong: 29.0%; H. Bara: 46.2%). In addition, under CO2 enrichment, the concentration of amino acids increased by approximately 14.5% and 98.9% in H. Bentong and 12.0% and 110.3% in H. Bara leaf and rhizome, respectively. The antinutrient contents (cyanide and tannin) except phytic acid were influenced significantly (P ≤ 0.05) by CO2 concentration. Leaf extract of H. Bara exposed to elevated CO2 exhibited highest content of cyanide (336.1 mg HCN/kg DW), while, highest content of tannin (27.5 g/kg DW) and phytic acid (54.1 g/kg DW) were recorded from H.Bara rhizome grown under elevated CO2. These results demonstrate that the CO2 enrichment technique could improve content of some amino acids and antinutrients of ginger as a food crop by enhancing its nutritional and health-promoting properties.
    Matched MeSH terms: Oxidation-Reduction
  17. Agatonovic-Kustrin S, Morton DW, Ristivojević P
    J Chromatogr A, 2016 Oct 14;1468:228-235.
    PMID: 27670751 DOI: 10.1016/j.chroma.2016.09.041
    The aim of this study was to develop and validate a rapid and simple high performance thin layer chromatographic (HPTLC) method to screen for antioxidant activity in algal samples. 16 algal species were collected from local Victorian beaches. Fucoxanthin, one of the most abundant marine carotenoids was quantified directly from the HPTLC plates before derivatization, while derivatization either with 2,2-diphenyl-1-picrylhydrazyl (DPPH) or ferric chloride (FeCl3) was used to analyze antioxidants in marine algae, based on their ability to scavenge non biological stable free radical (DPPH) or to chelate iron ions. Principal component analysis of obtained HPTLC fingerprints has classified algae species into 5 groups according to their chemical/antioxidant profiles. The investigated brown algae samples were found to be rich in non-and moderate-polar compounds and phenolic compounds with antioxidant activity. Most of the phenolic iron chelators also have shown free radical scavenging activity. Strong positive and significant correlations between total phenolic content and DPPH radical scavenging activity showed that, phenolic compounds, including flavonoids are the main contributors of antioxidant activity in these species. The results suggest that certain brown algae possess significantly higher antioxidant potential when compared to red or green algae and could be considered for future applications in medicine, dietary supplements, cosmetics or food industries. Cystophora monilifera extract was found to have the highest antioxidant concentration, followed by Zonaria angustata, Cystophora pectinate, Codium fragile, and Cystophora pectinata. Fucoxanthin was found mainly in the brown algae species. The proposed methods provide an edge in terms of screening for antioxidants and quantification of antioxidant constituents in complex mixtures. The current application also demonstrates flexibility and versatility of a standard HPTLC system in the drug discovery. Proposed methods could be used for the bioassay-guided isolation of unknown natural antioxidants and subsequent identification if combined with spectroscopic identification.
    Matched MeSH terms: Oxidation-Reduction
  18. Chong CS, Sabir DK, Lorenz A, Bontemps C, Andeer P, Stahl DA, et al.
    Appl Environ Microbiol, 2014 Nov;80(21):6601-10.
    PMID: 25128343 DOI: 10.1128/AEM.01818-14
    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.
    Matched MeSH terms: Oxidation-Reduction
  19. Jairoun AA, Shahwan M, Zyoud SH
    PLoS One, 2020;15(12):e0244688.
    PMID: 33382790 DOI: 10.1371/journal.pone.0244688
    BACKGROUND: Fish oil supplements that are rich in omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs). PUFAs are among the most widely-used dietary supplements globally, and millions of people consume them regularly. There have always been public concerns that these products should be guaranteed to be safe and of good quality, especially as these types of fish oil supplements are extremely susceptible to oxidative degradation.

    OBJECTIVES: The aim of the current study is to investigate and examine the oxidation status of dietary supplements containing fish oils and to identify important factors related to the oxidation status of such supplements available in the United Arab Emirates (UAE).

    METHODS: A total of 44 fish oil supplements were analysed in this study. For each product, the oxidative parameters peroxide value (PV), anisidine value (AV), and total oxidation (TOTOX) were calculated, and comparisons were made with the guidelines supplied by the Global Organization for EPA and DHA Omega-3s (GOED). Median values for each of the above oxidative parameters were tested using the Kruskal-Wallis and Mann-Whitney U tests. P values < 0.05 were chosen as the statistically significant boundary.

    RESULTS: The estimate for the average PV value was 6.4 with a 95% confidence interval (CI) [4.2-8.7] compared to the maximum allowable limit of 5 meq/kg. The estimate for the average P-AV was 11 with a 95% CI [7.8-14.2] compared to the maximum allowable limit of 20. The estimate for the average TOTOX value was 23.8 meq/kg with a 95% CI [17.4-30.3] compared to the maximum allowable limit of 26 according to the GOED standards.

    CONCLUSION: This research shows that most, although not all, of the fish oil supplements tested are compliant with the GOED oxidative quality standards. Nevertheless, it is clear that there should be a high level of inspection and control regarding authenticity, purity, quality, and safety in the processes of production and supply of dietary supplements containing fish oils.

    Matched MeSH terms: Oxidation-Reduction
  20. How GT, Pandikumar A, Ming HN, Ngee LH
    Sci Rep, 2014;4:5044.
    PMID: 24853929 DOI: 10.1038/srep05044
    Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2-60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications.
    Matched MeSH terms: Oxidation-Reduction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links