Displaying publications 401 - 420 of 450 in total

Abstract:
Sort:
  1. Arif NM, Ahmad SA, Syed MA, Shukor MY
    J Basic Microbiol, 2013 Jan;53(1):9-19.
    PMID: 22581645 DOI: 10.1002/jobm.201100120
    In this work, we report on the isolation of a phenol-degrading Rhodococcus sp. with a high tolerance towards phenol. The isolate was identified as Rhodococcus sp. strain AQ5NOL 2, based on 16S rDNA analysis. The strain degraded phenol using the meta pathway, a trait shared by many phenol-degraders. In addition to phenol biodegradation, the strain was also capable of degrading diesel. Strain AQ5NOL 2 exhibited a broad optimum temperature for growth on phenol at between 20 °C and 35 °C. The best nitrogen sources were ammonium sulphate, glycine or phenylalanine, followed by proline, nitrate, leucine, and alanine (in decreasing efficiency). Strain AQ5NOL 2 showed a high tolerance and degradation capacity of phenol, for it was able to register growth in the presence of 2000 mg l(-1) phenol. The growth of this strain on phenol as sole carbon and energy source were modeled using Haldane kinetics with a maximal specific growth rate (μ(max)) of 0.1102 hr(-1), a half-saturation constant (K(s) ) of 99.03 mg l(-1) or 1.05 mmol l(-1), and a substrate inhibition constant (K(i)) of 354 mg l(-1) or 3.76 mmol l(-1). Aside from phenol, the strain could utilize diesel, 2,4-dinitrophenol and ρ-cresol as carbon sources for growth. Strain AQ5NOL 2 exhibited inhibition of phenol degradation by Zn(2+), Cu(2+), Cr(6+), Ag(+) and Hg(2+) at 1 mg l(-1).
    Matched MeSH terms: Metals, Heavy/metabolism
  2. Hor SY, Ahmad M, Farsi E, Yam MF, Hashim MA, Lim CP, et al.
    Regul Toxicol Pharmacol, 2012 Jun;63(1):106-14.
    PMID: 22440551 DOI: 10.1016/j.yrtph.2012.03.006
    Recently, the fruits of Hylocereus polyrhizus, known as red dragon fruit, have received much attention from growers worldwide. However, there is little toxicological information regarding the safety of repeated exposure to these fruits. The present study evaluated the potential toxicity of a methanol extract of H. polyrhizus fruit after acute and subchronic administration in rats. In the acute toxicity study, single doses of fruit extract (1250, 2500 and 5000 mg/kg) were administered to rats by oral gavage, and the rats were then monitored for 14 days. In the subchronic toxicity study, the fruit extract was administered orally to rats at doses of 1250, 2500 and 5000 mg/kg/day for 28 days. There was no mortality or signs of acute or subchronic toxicity. There was no significant difference in body weight, relative organ weight or hematological parameters in the subchronic toxicity study. Biochemical analysis showed some significant changes, including creatinine, globulin, total protein and urea levels. No abnormality of internal organs was observed between treatment and control groups. The lethal oral dose of the fruit extract is more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of the extract for both male and female rats is considered to be 5000 mg/kg per day for 28 days.
    Matched MeSH terms: Metals, Heavy/analysis
  3. Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, et al.
    J Environ Manage, 2016 Dec 01;183:182-95.
    PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059
    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
    Matched MeSH terms: Metals, Heavy/toxicity*
  4. Karami A, Romano N, Galloway T, Hamzah H
    Environ Res, 2016 Nov;151:58-70.
    PMID: 27451000 DOI: 10.1016/j.envres.2016.07.024
    Despite the ubiquity of microplastics (MPs) in aquatic environments and their proven ability to carry a wide variety of chemicals, very little is known about the impacts of virgin or contaminant-loaded MPs on organisms. The primary aim of this study was to investigate the impacts of virgin or phenanthrene (Phe)-loaded low-density polyethylene (LDPE) fragments on a suite of biomarker responses in juvenile African catfish (Clarias gariepinus). Virgin LDPE (50 or 500µg/L) were preloaded with one of two nominal Phe concentrations (10 or 100µg/L) and were exposed to the fish for 96h. Our findings showed one or both Phe treatments significantly increased the degree of tissue change (DTC) in the liver while decreased the transcription levels of forkhead box L2 (foxl2) and tryptophan hydroxylase2 (tph2) in the brain of C. gariepinus. Exposure to either levels of virgin MPs increased the DTC in the liver and plasma albumin: globulin ratio while decreased the transcription levels of tph2. Moreover, MPs modulated (interacted with) the impact of Phe on the DTC in the gill, plasma concentrations of cholesterol, high-density lipoprotein (HDL), total protein (TP), albumin, and globulin, and the transcription levels of fushi tarazu-factor 1 (ftz-f1), gonadotropin-releasing hormone (GnRH), 11 β-hydroxysteroid dehydrogenase type 2 (11β-hsd2), and liver glycogen stores. Results of this study highlight the ability of virgin LDPE fragments to cause toxicity and to modulate the adverse impacts of Phe in C. gariepinus. Due to the wide distribution of MPs and other classes of contaminants in aquatic environments, further studies are urgently needed to elucidate the toxicity of virgin or contaminant-loaded MPs on organisms.
    Matched MeSH terms: Metals, Heavy/analysis
  5. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Metals, Heavy/analysis*
  6. Chen SH, Cheow YL, Ng SL, Ting ASY
    J Hazard Mater, 2019 01 15;362:394-402.
    PMID: 30248661 DOI: 10.1016/j.jhazmat.2018.08.077
    Penicillium simplicissimum (isolate 10), a metal tolerant fungus, tolerated 1000 mg/L Cu and 500 mg/L Zn, but were inhibited by Cd (100 mg/L), evident by the Tolerance Index (TI) of 0.88, 0.83, and 0.08, respectively. Live cells of P. simplicissimum were more effective in removing Cr (88.6%), Pb (73.7%), Cu (63.8%), Cd (33.1%), and Zn (28.3%) than dead cells (5.3-61.7%). Microscopy approach via SEM-EDX and TEM-EDX suggested that metal removal involved biosorption and bioaccumulation, with metal precipitates detected on the cell wall, and in the cytoplasm and vacuoles. FTIR analysis revealed metals interacted with amino, carbonyl, hydroxyl, phosphoryl (except Cd) and nitro groups in the cell wall. Biosorption and bioaccumulation of metals by live cells reduced Cu and Pb toxicity, observed from good root and (4.00-4.28 cm) and shoot (8.07-8.36 cm) growth of Vigna radiata in the phytotoxicity assay.
    Matched MeSH terms: Metals, Heavy/analysis*
  7. Wahab MIA, Razak WMAA, Sahani M, Khan MF
    Sci Total Environ, 2020 Feb 10;703:135535.
    PMID: 31767333 DOI: 10.1016/j.scitotenv.2019.135535
    This study aimed to assess the concentrations and health effect of trace metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)] on the road dust of selected locations in the city of Kuala Lumpur. Sampling was conducted thrice at four locations, namely, Tun Razak Road, Raja Abdullah Road, Tunku Abdul Rahman (TAR) Road, and Ayer Molek Road. The concentrations of trace metals in road dust were analyzed by inductively coupled plasma mass spectrometry. TAR Road presented the highest Cd, Cu, Ni, and Pb contents compared with the other roads. The pollution level of trace metals in road dust was assessed by pollution index and pollution load index (PLI), showing that all studied locations were highly contaminated except Ayer Molek Road. Based on the PLI value, the sequence of pollution in descending order is as follows: TAR Road > Raja Abdullah Road > Tun Razak Road > Ayer Molek Road. Health risk assessment was performed to assess the health effects of carcinogenic and noncarcinogenic pollutants caused by the exposure to trace metals in road dust on adults and children. Based on the integrated hazard index values for children at all locations, >1 indicates a possible noncarcinogenic effect. All incremental lifetime cancer risk values for adult and children at all locations are within acceptable limits and are considered safe.
    Matched MeSH terms: Metals, Heavy/analysis*
  8. Aldawsari A, Khan MA, Hameed BH, Alqadami AA, Siddiqui MR, Alothman ZA, et al.
    PLoS One, 2017;12(9):e0184493.
    PMID: 28910368 DOI: 10.1371/journal.pone.0184493
    A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25-100 mg/L was observed, accomplishing 77-97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn-O, Pb-O, Cd-O, and Cu-O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption.
    Matched MeSH terms: Metals, Heavy/isolation & purification*
  9. Sidi N, Aris AZ, Mohamat Yusuff F, Looi LJ, Mokhtar NF
    Mar Pollut Bull, 2018 Jan;126:113-118.
    PMID: 29421077 DOI: 10.1016/j.marpolbul.2017.10.041
    Revealing the potential of seagrass as a bioindicator for metal pollution is important for assessing marine ecosystem health. Trace metal (111Cd, 63Cu, 60Ni, 208Pb, 66Zn) concentrations in the various parts (root, rhizome, and blade) of tape seagrass (Enhalus acoroides) collected from Merambong shoal of Sungai Pulai estuary, Johor Strait, Malaysia were acid-extracted using a microwave digester and analysed via inductively coupled plasma-mass spectrometry (ICP-MS). The ranges of trace metal concentrations (in μgg-1 dry weight) were as follows: Cd (0.05-0.81), Cu (1.62-27.85), Ni (1.89-9.35), Pb (0.69-4.16), and Zn (3.44-35.98). The translocation factor revealed that E. acoroides is a hyperaccumulator plant, as its blades can accumulate high concentrations of Cd, Cu, Ni, and Zn, but not Pb. The plant limits Pb mobility to minimize Pb's toxic impact. Thus, E. acoroides is a potential bioindicator of metal pollution by Cd, Cu, Ni, and Zn in estuarine environments.
    Matched MeSH terms: Metals, Heavy/analysis*
  10. Janaydeh M, Ismail A, Omar H, Zulkifli SZ, Bejo MH, Aziz NAA
    Environ Monit Assess, 2017 Dec 27;190(1):47.
    PMID: 29282545 DOI: 10.1007/s10661-017-6416-2
    Heavy metal pollution has become a global concern due to accumulation in tissue and transferable effects to humans via the food chain. This study focused on monitoring the accumulation of cadmium (Cd) and lead (Pb) in surface soil and body content: bone, heart, brain, liver, lung, muscle, kidney, feathers, feces, and gizzard contents of house crow Corvus splendens in the Klang region, Malaysia. The results revealed the occurrence of Pb and Cd in all biological samples from house crows, food contents, and surface soil samples. Heart and kidney accrued high amounts of Cd, while high amounts of Pb were found to accumulate in bones and feathers. Major discrepancies were also discovered in the concentrations of metals between juvenile and adults, as well as female and male bird samples. Concentrations of Pb and Cd in house crow internal tissues correlated significantly with that of bird feathers, but none could be established with that of surface soil. In addition, a significant correlation was observed between Pb concentration in the internal tissues to that of the feces, but the same was not the case when compared with the surface soil concentration. Metal accrual in the house crows feathers and feces may be through a long-term transmission via the food chain, which are eliminated from feathers via molting. This may suggest the utility of molted breast feathers of house crow in the bio-monitoring of Cd and Pb contamination, whereas feces of house crow appear only to be suitable for the bio-monitoring of Pb contamination.
    Matched MeSH terms: Metals, Heavy/analysis
  11. Ashrafi M, Mohamad S, Yusoff I, Shahul Hamid F
    Environ Sci Pollut Res Int, 2015 Jan;22(1):223-30.
    PMID: 25060308 DOI: 10.1007/s11356-014-3299-4
    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.
    Matched MeSH terms: Metals, Heavy/analysis*
  12. Mustapha A, Aris AZ, Juahir H, Ramli MF, Kura NU
    Environ Sci Pollut Res Int, 2013 Aug;20(8):5630-44.
    PMID: 23443942 DOI: 10.1007/s11356-013-1542-z
    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.
    Matched MeSH terms: Metals, Heavy/analysis
  13. Shak KP, Wu TY, Lim SL, Lee CA
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1349-59.
    PMID: 23900949 DOI: 10.1007/s11356-013-1995-0
    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio.
    Matched MeSH terms: Metals, Heavy/analysis
  14. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Metals, Heavy/analysis*
  15. Md Badrul Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323813 DOI: 10.3390/molecules24142617
    Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation.
    Matched MeSH terms: Metals, Heavy/chemistry*
  16. Rudramurthy GR, Swamy MK
    J Biol Inorg Chem, 2018 Dec;23(8):1185-1204.
    PMID: 30097748 DOI: 10.1007/s00775-018-1600-6
    Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
    Matched MeSH terms: Metals, Heavy/chemistry
  17. Hajeb P, Jinap S, Shakibazadeh Sh, Afsah-Hejri L, Mohebbi GH, Zaidul IS
    PMID: 25090228 DOI: 10.1080/19440049.2014.942707
    This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R²) (0.897-0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO₂ flow rate of 3.7 ml min⁻¹ and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents.
    Matched MeSH terms: Metals, Heavy/analysis; Metals, Heavy/isolation & purification*
  18. Hamzah NA, Mohd Tamrin SB, Ismail NH
    Int J Occup Environ Health, 2016 07;22(3):224-232.
    PMID: 27392157 DOI: 10.1080/10773525.2016.1207040
    BACKGROUND: Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases.

    METHODS: A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV1, FVC, and %FEV1/FVC) were determined using spirometer.

    RESULTS: Exposure to cobalt and chromium were 1-3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV1, FVC, and %FEV1/FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV1/FVC (Adj b = -1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours.

    CONCLUSIONS: There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers.

    Matched MeSH terms: Metals, Heavy/adverse effects*; Metals, Heavy/analysis
  19. Futra D, Heng LY, Surif S, Ahmad A, Ling TL
    Sensors (Basel), 2014 Dec 05;14(12):23248-68.
    PMID: 25490588 DOI: 10.3390/s141223248
    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.
    Matched MeSH terms: Metals, Heavy/analysis*; Metals, Heavy/pharmacology
  20. Mustapha A, Aris AZ
    PMID: 22571534 DOI: 10.1080/10934529.2012.673305
    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.
    Matched MeSH terms: Metals, Heavy/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links