AIM OF THE STUDY: The primary aim of this review is to document the plants and natural products that are used as foods and medicines in Egypt, in general, and in Sinai, in particular, with a focus on those with demonstrated anticancer activities. The documented traditional uses of these plants are described, together with their chemical and pharmacological activities and the reported outcomes of clinical trials against cancer.
MATERIALS AND METHODS: A literature search was performed to identify texts describing the medicinal plants that are cultivated and grown in Egypt, including information found in textbooks, published articles, the plant list website (http://www.theplantlist.org/), the medicinal plant names services website (http://mpns.kew.org/mpns-portal/), and web databases (PubMed, Science Direct, and Google Scholar).
RESULTS AND DISCUSSION: We collected data for most of the plants cultivated or grown in Egypt that have been previously investigated for anticancer effects and reported their identified bioactive elements. Several plant species, belonging to different families and associated with 67 bioactive compounds, were investigated as potential anticancer agents (in vitro studies). The most potent cytotoxic activities were identified for the families Asteraceae, Lamiaceae, Chenopodiaceae, Apocynaceae, Asclepiadaceae, Euphorbiaceae, Gramineae, and Liliaceae. The anticancer activities of some species, such as Punica granatum L., Nerium oleander L., Olea europea L., Matricaria chamomilla L., Cassia acutifolia L., Nigella sativa L., Capsicum frutescens L., Withania somnifera L., and Zingiber officinale Roscoe, have been examined in clinical trials. Among the various Egyptian plant habitats, we found that most of these plants are grown in the North Sinai, New-Delta, and Giza Governorates.
CONCLUSION: In this review, we highlight the role played by Egyptian flora in current medicinal therapies and the possibility that these plants may be examined in further studies for the development of anticancer drugs. These bioactive plant extracts form the basis for the isolation of phytochemicals with demonstrated anticancer activities. Some active components derived from these plants have been applied to preclinical and clinical settings, including resveratrol, quercetin, isoquercetin, and rutin.
Materials and Methods: The cytotoxic effect of hydromethanolic extract of S. polyanthum against 4T1 and MCF-7 mammary carcinoma cells was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The cells were treated with the concentration of extracts ranging from 15.63 µg/mL to 1000 µg/ml for 72 h, and the percentage of cell survivability was determined based on minimum concentration that was able to allow at least 50% growth of cancer cells (IC50) after 72 h. The antibacterial activity was tested against common bacteria causing mastitis in cow. The bacteria were isolated from milk samples. The antibacterial activity of the extract was determined by disk diffusion method and susceptibility test based on minimum inhibitory concentration (MIC).
Results: Staphylococcus aureus, Staphylococcus hyicus, and Staphylococcus intermedius were isolated from the milk samples that positive for mastitis. The MIC values range from 7.12 mm to 13.5 mm. The extract exhibits the widest zone of inhibition (13.5±0.20 mm) at 1000 mg/ml of concentrations. The extract relatively has low cytotoxicity effect against 4T1 and MCF-7 cells with IC50 values ranging from 672.57±59.42 and 126.05±50.89 µg/ml, respectively.
Conclusion: S. polyanthum exerts weak antibacterial activity and cytotoxic effect to mammary carcinoma cells. The extract does not toxic to cells. However, further study is recommended, especially, this plant should be tested for in vivo.
OBJECTIVES: This systematic review aimed to identify, evaluate and summarise the published literature on the therapeutic roles of natural remedies in the treatment of HA to provide evidence for clinical practice.
METHODS: A systematic literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Web of Science, PubMed and Science Direct Scopus were thoroughly searched for relevant published articles from June 2007 to July 2020.
RESULTS: Ten pre-clinical and two clinical studies were eligible for inclusion in this systematic review. We identified the therapeutic roles of medicinal plants Brassica napus, Gardenia jasminoides, Gastrodia elata, Ginkgo biloba, Glycyrrhiza inflata, Paeonia lactiflora, Pueraria lobata and Rehmannia glutinosa; herbal formulations Shaoyao Gancao Tang and Zhengan Xifeng Tang; and medicinal mushroom Hericium erinaceus in the treatment of HA. In this review, we evaluated the mode of actions contributing to their therapeutic effects, including activation of the ubiquitin-proteasome system, activation of antioxidant pathways, maintenance of intracellular calcium homeostasis and regulation of chaperones. We also briefly highlighted the integral cellular signalling pathways responsible for orchestrating the mode of actions.
CONCLUSION: We reviewed the therapeutic roles of natural remedies in improving or halting the progression of HA, which warrant further study for applications into clinical practice.
METHODS: Hence, the evaluation of the synergistic activity of PLEAF and ampicillin against MRSA local isolate was conducted with scanning electron microscopy (SEM).
RESULTS: The combinational effect of PLEAF fraction and ampicillin exhibited significant antibacterial activity against MRSA. Bacterial cells observations showed invagination, impaired cell division, extensive wrinkles, cell shrinkage, the appearance of a rougher cell with fibrous matrix and clustered cells which confirmed the synergistic effect of PLEAF and ampicillin against MRSA local isolate by SEM.
CONCLUSION: Conclusively, the in situ SEM observation proved the synergistic antimicrobial activity between PLEAF fraction and ampicillin to destroy the MRSA resistance bacteria which is an important aspect of PLEAF fraction to be used in the future combinational therapy.