Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.
Scientific research has characterized the effects of dredging, an underwater excavation process for navigational purposes or material extraction, and has shown its association with a number of chemical, physical and biological impacts. Due to this, much environmental management has been applied in the dredging industry in order to manage its detrimental effects. However, developing nations may have different approaches towards their dredging environmental management to compare to their companions with higher economic strength. Moreover, scientific evidence to make an informed decision is often lacking, hence affecting the number of research executed at these nations, limiting their efforts to preserve the environment. This paper reviews the dredging environmental impacts and its two important factors, dredging technology and sediment characteristic, that determine the magnitude of impacts through literature review, and discusses the need for a more integrated dredging environmental management to be developed for developing nations.
Matched MeSH terms: Conservation of Natural Resources/methods*
Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided.
Biotechnology-based detection systems and sensors are in use for a wide range of applications in biomedicine, including the diagnostics of viral pathogens. In this review, emerging detection systems and their applicability for diagnostics of viruses, exemplified by the case of avian influenza virus, are discussed. In particular, nano-diagnostic assays presently under development or available as prototype and their potentials for sensitive and rapid virus detection are highlighted.
This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion.
Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70-160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2-1.0%, w/w) and beeswax (1-3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.
Matched MeSH terms: Drug Delivery Systems/methods*
Toxoplasma gondii infects all warm-blooded animals, including humans, causing serious public health problems and great economic loss for the food industry. Commonly used serological tests require costly and hazardous preparation of whole Toxoplasma lysate antigens from tachyzoites. Here, we have evaluated an alternative method for antigen production, which involved a prokaryotic expression system. Specifically, we expressed T. gondii dense granular protein-5 (GRA5) in Escherichia coli and isolated it by affinity purification. The serodiagnostic potential of the purified recombinant GRA5 (rGRA5) was tested through Western blot analysis against 212 human patient serum samples. We found that rGRA5 protein was 100% specific for analysis of toxoplasmosis-negative human sera. Also, rGRA5 was able to detect acute and chronic T. gondii infections (sensitivities of 46.8% and 61.2%, resp.).
The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.
Matched MeSH terms: Pest Control, Biological/methods*
This study evaluated 2 rapid leptospirosis serological tests, Leptorapide® (Linnodee, Northern Ireland) and VISITECT®-LEPTO (Omega Diagnostics, Scotland, UK), which are commonly used in Malaysia. A total of 183 samples comprised 113 sera from leptospirosis patients, and 70 sera from other infections and healthy controls were used. The leptospirosis sera were grouped into 2 serum panels, i.e., Group I (MAT+, PCR+) and Group II (MAT+). When inconclusive results were interpreted as positives, both tests showed lower diagnostic sensitivities (≤ 34%) with Group I sera, as compared to Group II sera (Leptorapide®, 93%; VISITECT®-LEPTO, 40%). When inconclusive results were interpreted as negatives, the 2 tests showed ~20% sensitivity with both serum panels. The diagnostic specificity of VISITECT®-LEPTO (94%) was superior to Leptorapide® (69%). Since both tests had misdiagnosed a large proportion of Group I patients and showed many inconclusive results among Group II patients, they have limited diagnostic value in detecting acute leptospirosis.
Schizophrenia is associated with severe episodic retrieval impairment. The aim of this study was to investigate the possibility that schizophrenia patients could improve their familiarity and/or recollection processes by manipulating the semantic coherence of to-be-learned stimuli and using deep encoding. Twelve schizophrenia patients and 12 healthy controls of comparable age, gender, and educational level undertook an associative recognition memory task. The stimuli consisted of pairs of words that were either related or unrelated to a given semantic category. The process dissociation procedure was used to calculate the estimates of familiarity and recollection processes. Both groups showed enhanced memory performances for semantically related words. However, in healthy controls, semantic relatedness led to enhanced recollection, while in schizophrenia patients, it induced enhanced familiarity. The familiarity estimates for related words were comparable in both groups, indicating that familiarity could be used as a compensatory mechanism in schizophrenia patients.
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
Computational epigenetics is a new area of research focused on exploring how DNA methylation patterns affect transcription factor binding that affect gene expression patterns. The aim of this study was to produce a new protocol for the detection of DNA methylation patterns using computational analysis which can be further confirmed by bisulfite PCR with serial pyrosequencing. The upstream regulatory element and pre-initiation complex relative to CpG islets within the methylenetetrahydrofolate reductase gene were determined via computational analysis and online databases. The 1,104 bp long CpG island located near to or at the alternative promoter site of methylenetetrahydrofolate reductase gene was identified. The CpG plot indicated that CpG islets A and B, within the island, contained 62 and 75 % GC content CpG ratios of 0.70 and 0.80-0.95, respectively. Further exploration of the CpG islets A and B indicates that the transcription start sites were GGC which were absent from the TATA boxes. In addition, although six PROSITE motifs were identified in CpG B, no motifs were detected in CpG A. A number of cis-regulatory elements were found in different regions within the CpGs A and B. Transcription factors were predicted to bind to CpGs A and B with varying affinities depending on the DNA methylation status. In addition, transcription factor binding may influence the expression patterns of the methylenetetrahydrofolate reductase gene by recruiting chromatin condensation inducing factors. These results have significant implications for the understanding of the architecture of transcription factor binding at CpG islets as well as DNA methylation patterns that affect chromatin structure.
A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.
Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs). These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL) and N-octanoyl-homoserine lactone (C8-HSL), was detected.
Matched MeSH terms: Tandem Mass Spectrometry/methods*
In recent years, astaxanthin is claimed to have a 10 times higher antioxidant activity than that of other carotenoids such as lutein, zeaxanthin, canthaxanthin, and β-carotene; the antioxidant activity of astaxanthin is 100 times higher than that of α-tocopherol. Penaeus monodon (tiger shrimp) is the largest commercially available shrimp species and its waste is a rich source of carotenoids such as astaxanthin and its esters. The efficient and environment-friendly recovery of astaxanthins was accomplished by using a supercritical fluid extraction (SFE) technique. The effects of different co-solvents and their concentrations on the yield and composition of the extract were investigated. The following co-solvents were studied prior to the optimization of the SFE technique: ethanol, water, methanol, 50% (v/v) ethanol in water, 50% (v/v) methanol in water, 70% (v/v) ethanol in water, and 70% (v/v) methanol in water. The ethanol extract produced the highest carotenoid yield (84.02 ± 0.8 μg/g) dry weight (DW) with 97.1% recovery. The ethanol extract also produced the highest amount of the extracted astaxanthin complex (58.03 ± 0.1 μg/g DW) and the free astaxanthin content (12.25 ± 0.9 μg/g DW) in the extract. Lutein and β-carotene were the other carotenoids identified. Therefore, ethanol was chosen for further optimization studies.
Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.
The use of wireless communication using inductive links to transfer data and power to implantable microsystems to stimulate and monitor nerves and muscles is increasing. This paper deals with the development of the theoretical analysis and optimization of an inductive link based on coupling and on spiral circular coil geometry. The coil dimensions offer 22 mm of mutual distance in air. However, at 6 mm of distance, the coils offer a power transmission efficiency of 80% in the optimum case and 73% in the worst case via low input impedance, whereas, transmission efficiency is 45% and 32%, respectively, via high input impedance. The simulations were performed in air and with two types of simulated human biological tissues such as dry and wet-skin using a depth of 6 mm. The performance results expound that the combined magnitude of the electric field components surrounding the external coil is approximately 98% of that in air, and for an internal coil, it is approximately 50%, respectively. It can be seen that the gain surrounding coils is almost constant and confirms the omnidirectional pattern associated with such loop antennas which reduces the effect of non-alignment between the two coils. The results also show that the specific absorption rate (SAR) and power loss within the tissue are lower than that of the standard level. Thus, the tissue will not be damaged anymore.