Displaying publications 461 - 480 of 921 in total

Abstract:
Sort:
  1. Lee-Yin C, Ismaill BS, Salmijah S, Halimah M
    J Environ Biol, 2013 Sep;34(5):957-61.
    PMID: 24558812
    The influence of temperature, moisture and organic matter on the persistence of cyfluthrin was determined using three types of Malaysian soils, namely clay, clay loam and sandy clay loam obtained from a tomato farm in Cameron Highlands, Pahang. The persistence of cyfluthrin was observed in the laboratory at two temperature levels of 25 and 35 degreeC and field water capacity of 30 and 80%. Treated soil samples were incubated in a growth chamber for 1, 2, 3, 5, 7, 10, 14, 21 and 28 days. The results from the incubation studies showed that temperature and organic matter content significantly reduced the half-life (t1/2) values of cyfluthrin in the three soil types, but moisture content had very little effect. It was observed that cyfluthrin persisted longer at lower temperature and moisture content and higher organic matter content in all the three soil types. The present study demonstrated that under the tropical conditions of Malaysia, cyfluthrin dissipated rapidly in soils compared to its dissipation in soils of temperate regions, evidently due to high temperature.
    Matched MeSH terms: Kinetics
  2. Sam MS, Lintang HO, Sanagi MM, Lee SL, Yuliati L
    PMID: 24503155 DOI: 10.1016/j.saa.2013.12.113
    A metal-free mesoporous carbon nitride (MCN) was investigated for the first time as an adsorbent for N-nitrosopyrrolidine (NPYR), which is one of the nitrosamine pollutants. Under the same condition, the adsorption capability of the MCN was found to be higher than that of the MCM-41. Since the adsorption isotherm was consistent with Langmuir and Freundlich model equations, it was suggested that the adsorption of NPYR molecules on the MCN occurred in the form of mono-molecular layer on the heterogeneous surface sites. It was proposed that MCN with suitable adsorption sites was beneficial for the adsorption of NPYR. The evidence on the interaction between the NPYR molecules and the MCN was supported by fluorescence spectroscopy. Two excitation wavelengths owing to the terminal N-C and N=C groups were used to monitor the interactions between the emission sites of the MCN and the NPYR molecules. It was confirmed that the intensity of the emission sites was quenched almost linearly with the concentration of NPYR. This result obviously suggested that the MCN would be applicable as a fluorescence sensor for detection of the NPYR molecules. From the Stern-Volmer plot, the quenching rate constant of terminal N-C groups was determined to be ca. two times higher than that of the N=C groups on MCN, suggesting that the terminal N-C groups on MCN would be the favoured sites interacted with the NPYR. Since initial concentration can be easily recovered, the interactions of NPYR on MCN were weak and might only involve electrostatic interactions.
    Matched MeSH terms: Kinetics
  3. Anouar el H, Raweh S, Bayach I, Taha M, Baharudin MS, Di Meo F, et al.
    J Comput Aided Mol Des, 2013 Nov;27(11):951-64.
    PMID: 24243063 DOI: 10.1007/s10822-013-9692-0
    Phenolic Schiff bases are known for their diverse biological activities and ability to scavenge free radicals. To elucidate (1) the structure-antioxidant activity relationship of a series of thirty synthetic derivatives of 2-methoxybezohydrazide phenolic Schiff bases and (2) to determine the major mechanism involved in free radical scavenging, we used density functional theory calculations (B3P86/6-31+(d,p)) within polarizable continuum model. The results showed the importance of the bond dissociation enthalpies (BDEs) related to the first and second (BDEd) hydrogen atom transfer (intrinsic parameters) for rationalizing the antioxidant activity. In addition to the number of OH groups, the presence of a bromine substituent plays an interesting role in modulating the antioxidant activity. Theoretical thermodynamic and kinetic studies demonstrated that the free radical scavenging by these Schiff bases mainly proceeds through proton-coupled electron transfer rather than sequential proton loss electron transfer, the latter mechanism being only feasible at relatively high pH.
    Matched MeSH terms: Kinetics
  4. Mohd Bahari Z, Ali Hamood Altowayti W, Ibrahim Z, Jaafar J, Shahir S
    Appl Biochem Biotechnol, 2013 Dec;171(8):2247-61.
    PMID: 24037600 DOI: 10.1007/s12010-013-0490-x
    The ability of non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment to adsorb As (III) from aqueous solution in batch experiments was investigated as a function of contact time, initial As (III) concentration, pH, temperature and biomass dosage. Langmuir model fitted the equilibrium data better in comparison to Freundlich isotherm. The maximum biosorption capacity of the sorbent, as obtained from the Langmuir isotherm, was 153.41 mg/g. The sorption kinetic of As (III) biosorption followed well the pseudo-second-order rate equation. The Fourier transform infrared spectroscopy analysis indicated the involvement of hydroxyl, amide and amine groups in As (III) biosorption process. Field emission scanning electron microscopy-energy dispersive X-ray analysis of the non-living B. cereus SZ2 biomass demonstrated distinct cell morphological changes with significant amounts of As adsorbed onto the cells compared to non-treated cells. Desorption of 94 % As (III) was achieved at acidic pH 1 showing the capability of non-living biomass B. cereus SZ2 as potential biosorbent in removal of As (III) from arsenic-contaminated mining effluent.
    Matched MeSH terms: Kinetics
  5. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Jun;138:124-30.
    PMID: 23612170 DOI: 10.1016/j.biortech.2013.03.179
    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively.
    Matched MeSH terms: Kinetics
  6. Tan IS, Lam MK, Lee KT
    Carbohydr Polym, 2013 Apr 15;94(1):561-6.
    PMID: 23544575 DOI: 10.1016/j.carbpol.2013.01.042
    Utilization of macroalgae biomass for bioethanol production appears as an alternative source to lignocellulosic materials. In this study, for the first time, Amberlyst (TM)-15 was explored as a potential catalyst to hydrolyze carbohydrates from Eucheuma cottonii extract to simple reducing sugar prior to fermentation process. Several important hydrolysis parameters were studied for process optimization including catalyst loading (2-5%, w/v), reaction temperature (110-130°C), reaction time (0-2.5 h) and biomass loading (5.5-15.5%, w/v). Optimum sugar yield of 39.7% was attained based on the following optimum conditions: reaction temperature at 120°C, catalyst loading of 4% (w/v), 12.5% (w/v) of biomass concentration and reaction time of 1.5h. Fermentation of the hydrolysate using Saccharomyces cerevisiae produced 0.33 g/g of bioethanol yield with an efficiency of 65%. The strategy of combining heterogeneous-catalyzed hydrolysis and fermentation with S. cerevisiae could be a feasible strategy to produce bioethanol from macroalgae biomass.
    Matched MeSH terms: Kinetics
  7. Oh WD, Lim PE, Seng CE, Sujari AN
    Bioresour Technol, 2012 Jun;114:179-87.
    PMID: 22503192 DOI: 10.1016/j.biortech.2012.03.065
    A kinetic model incorporating adsorption, desorption and biodegradation processes was developed to describe the bioregeneration of granular activated carbon (GAC) loaded with 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, in simultaneous adsorption and biodegradation processes. The model was numerically solved and the results showed that the kinetic model was well-fitted (R(2)>0.83) to the experimental data at different GAC dosages and at various initial 4-CP and 2,4-DCP concentrations. The rate of bioregeneration in simultaneous adsorption and biodegradation processes was influenced by the ratio of initial chlorophenol concentration to GAC dosage. Enhancement in the rate of bioregeneration was achieved by using the lowest ratio under either one of the following experimental conditions: (1) increasing initial chlorophenol concentration at constant GAC dosage and (2) increasing GAC dosage at constant initial chlorophenol concentration. It was found that the rate enhancement was more pronounced under the second experimental condition.
    Matched MeSH terms: Kinetics
  8. Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA
    Int J Mol Sci, 2012;13(1):302-15.
    PMID: 22312253 DOI: 10.3390/ijms13010302
    Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC) analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC). The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO and 100 ppm of p-cresol. P-cresol photocatalytic degradation was favorable in the pH range of 6-9. The detected intermediates were 4-hydroxy-benzaldehyde and 4-methyl-1,2-benzodiol. TOC studies show that 93% of total organic carbon was removed from solution during irradiation time. Reusability shows no significant reduction in photocatalytic performance in photodegrading p-cresol.
    Matched MeSH terms: Kinetics
  9. Monajemi H, Daud MN, Mohd Zain S, Wan Abdullah WA
    Biochem. Cell Biol., 2012 Dec;90(6):691-700.
    PMID: 23016605 DOI: 10.1139/o2012-027
    Finding a proper transition structure for the peptide bond formation process can lead one to a better understanding of the role of ribosome in catalyzing this reaction. Using computer simulations, we performed the potential energy surface scan on the ester bond dissociation of P-site aminoacyl-tRNA and the peptide bond formation of P-site and A-site amino acids. The full fragments of initiator tRNA(i)(met) and elongator tRNA(phe) are attached to both cognate and non-cognate amino acids as the P-site substrate. The A-site amino acid for all four calculations is methionine. We used ONIOM calculations to reduce the computational cost. Our study illustrates the reduced rate of peptide bond formation for misacylated tRNA(i)(met) in the absence of ribosomal bases. The misacylated elongator tRNA(phe), however, did not show any difference in its PES compared with that for the phe-tRNA(phe). This demonstrates the structural specification of initiator tRNA(i)(met) for the amino acids side chain.
    Matched MeSH terms: Kinetics
  10. Hanafiah MA, Ngah WS, Zolkafly SH, Teong LC, Majid ZA
    J Environ Sci (China), 2012;24(2):261-8.
    PMID: 22655386
    The potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis. The optimum conditions for AB 25 adsorption were pH 2, stirring rate 500 r/min, adsorbent dosage 0.10 g and contact time 60 min. The pseudo second-order model showed the best conformity to the kinetic data. The equilibrium adsorption of AB 25 was described by Freundlich and Langmuir, with the latter found to agree well with the isotherm model. The maximum monolayer adsorption capacity of BTSD was 24.39 mg/g at 300 K, estimated from the Langmuir model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that AB 25 adsorption was spontaneous and exothermic.
    Matched MeSH terms: Kinetics
  11. KoohiKamali S, Tan CP, Ling TC
    ScientificWorldJournal, 2012;2012:475027.
    PMID: 22593688 DOI: 10.1100/2012/475027
    In this study, the methanolysis process of sunflower oil was investigated to get high methyl esters (biodiesel) content using sodium methoxide. To reach to the best process conditions, central composite design (CCD) through response surface methodology (RSM) was employed. The optimal conditions predicted were the reaction time of 60 min, an excess stoichiometric amount of alcohol to oil ratio of 25%w/w and the catalyst content of 0.5%w/w, which lead to the highest methyl ester content (100%w/w). The methyl ester content of the mixture from gas chromatography analysis (GC) was compared to that of optimum point. Results, confirmed that there was no significant difference between the fatty acid methyl ester content of sunflower oil produced under the optimized condition and the experimental value (P ≥ 0.05). Furthermore, some fuel specifications of the resultant biodiesel were tested according to American standards for testing of materials (ASTM) methods. The outcome showed that the methyl ester mixture produced from the optimized condition met nearly most of the important biodiesel specifications recommended in ASTM D 6751 requirements. Thus, the sunflower oil methyl esters resulted from this study could be a suitable alternative for petrol diesels.
    Matched MeSH terms: Kinetics
  12. Asman S, Yusof NA, Abdullah AH, Haron MJ
    Molecules, 2012 Feb 15;17(2):1916-28.
    PMID: 22337139 DOI: 10.3390/molecules17021916
    This work reports the synthesis and characterization of a hybrid molecularly imprinted polymer (MIP) membrane for removal of methylene blue (MB) in an aqueous environment. MB-MIP powders were hybridized into a polymer membrane (cellulose acetate (CA) and polysulfone (PSf)) after it was ground and sieved (using 90 µm sieve). MB-MIP membranes were prepared using a phase inversion process. The MB-MIP membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Parameters investigated for the removal of MB by using membrane MB-MIP include pH, effect of time, concentration of MB, and selectivity studies. Maximum sorption of MB by PSf-MB-MIP membranes and CA-MB-MIP membranes occurred at pH 10 and pH 12, respectively. The kinetic study showed that the sorption of MB by MB-MIP membranes (PSf-MB-MIP and CA-MB-MIP) followed a pseudo-second-order-model and the MB sorption isotherm can be described by a Freundlich isotherm model.
    Matched MeSH terms: Kinetics
  13. Muhamad N, Walker LR, Pedley KC, Simcock DC, Brown S
    Parasitol Int, 2012 Sep;61(3):487-92.
    PMID: 22562002 DOI: 10.1016/j.parint.2012.04.003
    The initial rate of NH(3)/NH(4)(+) accumulation in a medium containing L(3) Teladorsagia circumcincta was 0.18-0.6 pmol h(-1) larva(-1), which increased linearly with larval density. However it appeared that the larva-generated external concentration of NH(3)/NH(4)(+) did not exceed about 130 μM. The rate of NH(3)/NH(4)(+) accumulation increased with temperature between 4 °C and 37 °C, declined with increasing pH or increasing external NH(3)/NH(4)(+) concentration and was not significantly affected by the concentration of the phosphate buffer or by exsheathing the larvae. We infer from these data that the efflux of NH(3)/NH(4)(+) is a diffusive process and that the secreted or excreted NH(3)/NH(4)(+) is generated enzymatically rather than dissociating from the surface of the nematode. The enzymatic source of the NH(3)/NH(4)(+) is yet to be identified. Since the concentration of NH(3)/NH(4)(+) in the rumen and abomasum is higher than 130 μM, it is unlikely that T. circumcincta contributes to it, but NH(3)/NH(4)(+) may be accumulated from the rumen fluid by the nematode.
    Matched MeSH terms: Ammonia/pharmacokinetics*; Kinetics
  14. Idris SS, Rahman NA, Ismail K
    Bioresour Technol, 2012 Nov;123:581-91.
    PMID: 22944493 DOI: 10.1016/j.biortech.2012.07.065
    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.
    Matched MeSH terms: Kinetics
  15. Rahman RN, Zakaria II, Salleh AB, Basri M
    Int J Mol Sci, 2012;13(8):9673-91.
    PMID: 22949824 DOI: 10.3390/ijms13089673
    PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant's active site.
    Matched MeSH terms: Kinetics
  16. Sajab MS, Chia CH, Zakaria S, Jani SM, Ayob MK, Chee KL, et al.
    Bioresour Technol, 2011 Aug;102(15):7237-43.
    PMID: 21620692 DOI: 10.1016/j.biortech.2011.05.011
    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.
    Matched MeSH terms: Kinetics
  17. Gouwanda D, Senanayake SM
    J Med Eng Technol, 2011 Nov;35(8):432-40.
    PMID: 22074136 DOI: 10.3109/03091902.2011.627080
    A real-time gait monitoring system that incorporates an immediate and periodical assessment of gait asymmetry is described. This system was designed for gait analysis and rehabilitation of patients with pathologic gait. It employs wireless gyroscopes to measure the angular rate of the thigh and shank in real time. Cross-correlation of the lower extremity (Cc(norm)), and normalized Symmetry Index (SI(norm)) are implemented as new approaches to periodically determine the gait asymmetry in each gait cycle. Cc(norm) evaluates the signal patterns measured by wireless gyroscopes in each gait cycle. SI(norm) determines the movement differences between the left and right limb. An experimental study was conducted to examine the viability of these methods. Artificial asymmetrical gait was simulated by placing a load on one side of the limbs. Results showed that there were significant differences between the normal gait and asymmetrical gait (p < 0.01). They also indicated that the system worked well in periodically assessing the gait asymmetry.
    Matched MeSH terms: Kinetics
  18. Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RE, Mohamed Z
    Molecules, 2011 Aug 29;16(9):7344-56.
    PMID: 21876481 DOI: 10.3390/molecules16097344
    The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.
    Matched MeSH terms: Kinetics
  19. Kalani M, Yunus R, Abdullah N
    Int J Nanomedicine, 2011;6:1101-5.
    PMID: 21698077 DOI: 10.2147/IJN.S18979
    The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.
    Matched MeSH terms: Acetaminophen/pharmacokinetics; Kinetics
  20. Hamzah HH, Yusof NA, Salleh AB, Bakar FA
    Sensors (Basel), 2011;11(8):7302-13.
    PMID: 22164018 DOI: 10.3390/s110807302
    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (K(i)) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.
    Matched MeSH terms: Kinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links