Displaying publications 461 - 480 of 1534 in total

Abstract:
Sort:
  1. Tanaka H, Ong MEH, Siddiqui FJ, Ma MHM, Kaneko H, Lee KW, et al.
    Ann Emerg Med, 2018 05;71(5):608-617.e15.
    PMID: 28985969 DOI: 10.1016/j.annemergmed.2017.07.484
    STUDY OBJECTIVE: The study aims to identify modifiable factors associated with improved out-of-hospital cardiac arrest survival among communities in the Pan-Asian Resuscitation Outcomes Study (PAROS) Clinical Research Network: Japan, Singapore, South Korea, Malaysia, Taiwan, Thailand, and the United Arab Emirates (Dubai).

    METHODS: This was a prospective, international, multicenter cohort study of out-of-hospital cardiac arrest in the Asia-Pacific. Arrests caused by trauma, patients who were not transported by emergency medical services (EMS), and pediatric out-of-hospital cardiac arrest cases (<18 years) were excluded from the analysis. Modifiable out-of-hospital factors (bystander cardiopulmonary resuscitation [CPR] and defibrillation, out-of-hospital defibrillation, advanced airway, and drug administration) were compared for all out-of-hospital cardiac arrest patients presenting to EMS and participating hospitals. The primary outcome measure was survival to hospital discharge or 30 days of hospitalization (if not discharged). We used multilevel mixed-effects logistic regression models to identify factors independently associated with out-of-hospital cardiac arrest survival, accounting for clustering within each community.

    RESULTS: Of 66,780 out-of-hospital cardiac arrest cases reported between January 2009 and December 2012, we included 56,765 in the analysis. In the adjusted model, modifiable factors associated with improved out-of-hospital cardiac arrest outcomes included bystander CPR (odds ratio [OR] 1.43; 95% confidence interval [CI] 1.31 to 1.55), response time less than or equal to 8 minutes (OR 1.52; 95% CI 1.35 to 1.71), and out-of-hospital defibrillation (OR 2.31; 95% CI 1.96 to 2.72). Out-of-hospital advanced airway (OR 0.73; 95% CI 0.67 to 0.80) was negatively associated with out-of-hospital cardiac arrest survival.

    CONCLUSION: In the PAROS cohort, bystander CPR, out-of-hospital defibrillation, and response time less than or equal to 8 minutes were positively associated with increased out-of-hospital cardiac arrest survival, whereas out-of-hospital advanced airway was associated with decreased out-of-hospital cardiac arrest survival. Developing EMS systems should focus on basic life support interventions in out-of-hospital cardiac arrest resuscitation.

    Matched MeSH terms: Survival Rate; Survival Analysis
  2. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N
    Microb Pathog, 2018 Jan;114:323-327.
    PMID: 29229504 DOI: 10.1016/j.micpath.2017.11.043
    Chitosan is the second most abundant polymer obtained from the byproduct of seafood. Chitosan and its derivatives and chitosan loaded drugs are the recent area of interest against microbial pathogenesis. The cationic chitosan nanoparticles (ChNPs) interact with the anionic surfaces of the microbial cell membrane, which promotes antimicrobial activity. Although, ChNPs are potential against pathogenic microbes, selection of adaptable, suitable and cost effective synthesis method is much important. In the present study, ChNPs were synthesized adopting ionic gelation using sodium tripolyphosphate as a cross linking agent and characterized by FTIR, DLS, SEM and TEM analysis. ChNPs were investigated for antimicrobial activity against bacterial (Escherichia coli and Staphylococcus aureus) and fungal (Candida albicans) pathogens. ChNPs showed bactericidal activity at the lower minimum inhibitory concentration of about 40-80 μg mL-1. Interestingly, ChNPs exhibits biocompatible antioxidant property by inhibiting DPPH free radicals at 76% and also proven to be a potential candidate against the microbial pathogenesis with an inevitable applications in biomedicine.
    Matched MeSH terms: Cell Survival/drug effects
  3. Ganapathy R, Mani S, Hanumanth Rao BR, Tunku K, Ray B, Bhat A, et al.
    Front Biosci (Elite Ed), 2018 03 01;10:437-448.
    PMID: 29293467
    Thraatchathi Chooranam (TC), is a polyphenol-rich Indian traditional medicine. Present study was undertaken to investigate the effects of TC against H2O2 induced oxidative stress and apoptotic damage in H9C2 cardiomyocytes. Cell viability assay indicated relative safety (IC50= 488.10±12.04 mg/ml) of TC. Pretreatment of cells with TC upregulated anti-apoptotic Bcl2, and anti-oxidants TRX1 and TRXR and downregulated Bax and HIF-α and inflammatory genes iNOS and TNF-α. Together, these findings show that TC has both anti-oxidant and anti-apoptotic properties. Further studies may be considered to identify the bioactive principle(s) and precise mechanisms of action of TC.
    Matched MeSH terms: Cell Survival/drug effects
  4. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

    Matched MeSH terms: Cell Survival/drug effects
  5. Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK
    Sci Rep, 2018 01 12;8(1):586.
    PMID: 29330486 DOI: 10.1038/s41598-017-18938-y
    In this study, Rh2-treated graphene oxide (GO-Rh2), lysine-treated highly porous graphene (Gr-Lys), arginine-treated Gr (Gr-Arg), Rh2-treated Gr-Lys (Gr-Lys-Rh2) and Rh2-treated Gr-Arg (Gr-Arg-Rh2) were synthesized. MTT assay was used for evaluation of cytotoxicity of samples on ovarian cancer (OVCAR3), breast cancer (MDA-MB), Human melanoma (A375) and human mesenchymal stem cells (MSCs) cell lines. The percentage of apoptotic cells was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The hemolysis and blood coagulation activity of nanostructures were performed. Interestingly, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2 were more active against cancer cell lines in comparison with their cytotoxic activity against normal cell lines (MSCs) with IC50 values higher than 100 μg/ml. The results of TUNEL assay indicates a significant increase in the rates of TUNEL positive cells by increasing the concentrations of nanomaterials. Results were also shown that aggregation and changes of RBCs morphology were occurred in the presence of GO, GO-Rh2, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2. Note that all the samples had effect on blood coagulation system, especially on PTT. All nanostrucure act as antitumor drug so that binding of drugs to a nostructures is irresolvable and the whole structure enter to the cell as a drug.
    Matched MeSH terms: Cell Survival/drug effects
  6. Osman AF, M Fitri TF, Rakibuddin M, Hashim F, Tuan Johari SAT, Ananthakrishnan R, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:194-206.
    PMID: 28254285 DOI: 10.1016/j.msec.2016.11.137
    Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device.
    Matched MeSH terms: Cell Survival/drug effects
  7. Chong LA, Khalid F
    Singapore Med J, 2016 Feb;57(2):77-80.
    PMID: 26893078 DOI: 10.11622/smedj.2016032
    There is increased awareness of paediatric palliative care in Malaysia, but no local published data on home care services. We aimed to describe the paediatric experience at Hospis Malaysia, a community-based palliative care provider in Malaysia.
    Matched MeSH terms: Survival Rate/trends
  8. Ismail M, Bagalkotkar G, Iqbal S, Adamu HA
    Molecules, 2012 May 14;17(5):5745-56.
    PMID: 22628046 DOI: 10.3390/molecules17055745
    Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus), indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties, using the MTS assay, on four human cancer cell lines: colon (HT-29), breast (MCF-7), prostate (DU-145) and lung (H460) cancers. The best anticancer activity was observed for the ethyl acetate (EA) extract of Casearia capitellata leaves on MCF-7 cell lines with IC₅₀ 2.0 μg/mL and its methanolic (MeOH) extract showed an outstanding activity against lung cancer cell lines. Dichloromethane (DCM) extract of Phyllanthus pulcher aerial parts showed the highest anticancer activity against DU-145 cell lines, while significant activity was exhibited by DCM extract of Phyllanthus pulcher roots on colon cancer cell lines with IC50 value of 8.1 μg/mL. Total phenolic content (TPC) ranged over 1-40 mg gallic acid equivalents (GAE)/g. For all the samples, highest yields of phenolics were obtained for MeOH extracts. Among all the extracts analyzed, the MeOH extracts of Strobilanthus crispus leaves exhibited the highest TPC than other samples (p < 0.05). This study shows that the nature of phenol determines its anticaner activity and not the number of phenols present.
    Matched MeSH terms: Cell Survival/drug effects
  9. Mohd Zainal Abidin R, Luddin N, Shamsuria Omar N, Mohamed Aly Ahmed H
    J Clin Pediatr Dent, 2015;39(3):235-40.
    PMID: 26208068 DOI: 10.17796/1053-4628-39.3.235
    To compare the cytotoxicity of conventional GIC and Resin Modified GIC (RMGIC) polymerized at 2 different times on stem cells from human exfoliated deciduous teeth (SHED).
    Matched MeSH terms: Cell Survival/drug effects
  10. Dh HS, Sultana R, Prabhu A, S R P, Mohanto S, Subramaniyan V
    Biomed Pharmacother, 2024 May;174:116533.
    PMID: 38574626 DOI: 10.1016/j.biopha.2024.116533
    INTRODUCTION: Diabetic nephropathy is a type of kidney disorder that develops as a complication of multifactorial diabetes. Diabetic nephropathy is characterized by microangiopathy, resulting from glucose metabolism, oxidative stress, and changes in renal hemodynamics. This study strived to evaluate the in vitro cytoprotective activity of atorvastatin (ATR), and quercetin (QCT) alone and in combination against diabetic nephropathy.

    METHODS: The MTT assay was utilized to analyze the effects of the test compounds on NRK-52E rat kidney epithelial cells. The detection of apoptosis and ability to scavenge free radicals was assessed via acridine orange-ethidium bromide (AO-EB) dual fluorescence staining, and 2,2-diphenyl-1-picrylhydrazyfree assay (DPPH), respectively. The ability of anti-inflammatory effect of the test compounds and western blot analysis against TGF-β, TNF-α, and IL-6 further assessed to determine the combinatorial efficacy.

    RESULTS: Atorvastatin and quercetin treatment significantly lowered the expression of TGF-β, TNF-α, and IL-6 indicating the protective role in Streptozotocin-induced nephrotoxicity. The kidney cells treated with a combination of atorvastatin and quercetin showed green fluorescing nuclei in the AO-EB staining assay, indicating that the combination treatment restored cell viability. Quercetin, both alone and in combination with atorvastatin, demonstrated strong DPPH free radical scavenging activity and further encountered an anti-oxidant and anti-inflammatory effect on the combination of these drugs.

    CONCLUSION: Nevertheless, there is currently no existing literature that reports on the role of QCT as a combination renoprotective drug with statins in the context of diabetic nephropathy. Hence, these findings suggest that atorvastatin and quercetin may have clinical potential in treating diabetic nephropathy.

    Matched MeSH terms: Cell Survival/drug effects
  11. Ismail NI, Othman I, Abas F, H Lajis N, Naidu R
    Int J Mol Sci, 2019 May 17;20(10).
    PMID: 31108984 DOI: 10.3390/ijms20102454
    Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
    Matched MeSH terms: Cell Survival/drug effects
  12. Al-Ani LA, Yehye WA, Kadir FA, Hashim NM, AlSaadi MA, Julkapli NM, et al.
    PLoS One, 2019;14(5):e0216725.
    PMID: 31086406 DOI: 10.1371/journal.pone.0216725
    Nanotechnology-based antioxidants and therapeutic agents are believed to be the next generation tools to face the ever-increasing cancer mortality rates. Graphene stands as a preferred nano-therapeutic template, due to the advanced properties and cellular interaction mechanisms. Nevertheless, majority of graphene-based composites suffer from hindered development as efficient cancer therapeutics. Recent nano-toxicology reviews and recommendations emphasize on the preliminary synthetic stages as a crucial element in driving successful applications results. In this study, we present an integrated, green, one-pot hybridization of target-suited raw materials into curcumin-capped gold nanoparticle-conjugated reduced graphene oxide (CAG) nanocomposite, as a prominent anti-oxidant and anti-cancer agent. Distinct from previous studies, the beneficial attributes of curcumin are employed to their fullest extent, such that they perform dual roles of being a natural reducing agent and possessing antioxidant anti-cancer functional moiety. The proposed novel green synthesis approach secured an enhanced structure with dispersed homogenous AuNPs (15.62 ± 4.04 nm) anchored on reduced graphene oxide (rGO) sheets, as evidenced by transmission electron microscopy, surpassing other traditional chemical reductants. On the other hand, safe, non-toxic CAG elevates biological activity and supports biocompatibility. Free radical DPPH inhibition assay revealed CAG antioxidant potential with IC50 (324.1 ± 1.8%) value reduced by half compared to that of traditional citrate-rGO-AuNP nanocomposite (612.1 ± 10.1%), which confirms the amplified multi-potent antioxidant activity. Human colon cancer cell lines (HT-29 and SW-948) showed concentration- and time-dependent cytotoxicity for CAG, as determined by optical microscopy images and WST-8 assay, with relatively low IC50 values (~100 μg/ml), while preserving biocompatibility towards normal human colon (CCD-841) and liver cells (WRL-68), with high selectivity indices (≥ 2.0) at all tested time points. Collectively, our results demonstrate effective green synthesis of CAG nanocomposite, free of additional stabilizing agents, and its bioactivity as an antioxidant and selective anti-colon cancer agent.
    Matched MeSH terms: Cell Survival/drug effects
  13. Lee HB, Ho AS, Teo SH
    Cancer Chemother Pharmacol, 2006 Jul;58(1):91-8.
    PMID: 16211395
    Given that p53 is a tumor suppressor that plays a central role in the cellular response to DNA damage and that more than 50% of all cancers have mutated p53, the wider utility of photodynamic therapy (PDT) in the treatment of cancer will depend on an understanding of whether p53 status modulates response to PDT. In this study, we investigated the photosensitivity of isogenic cell lines that differ only in their p53 status to PDT using hypericin as the photosensitizer.
    Matched MeSH terms: Cell Survival/drug effects
  14. Berwanger O, Abdelhamid M, Alexander T, Alzubaidi A, Averkov O, Aylward P, et al.
    Clin Cardiol, 2018 Oct;41(10):1322-1327.
    PMID: 30098028 DOI: 10.1002/clc.23043
    Primary percutaneous coronary intervention (PCI) is the preferred reperfusion method in patients with ST-segment elevation myocardial infarction (STEMI). In patients with STEMI who cannot undergo timely primary PCI, pharmacoinvasive treatment is recommended, comprising immediate fibrinolytic therapy with subsequent coronary angiography and rescue PCI if needed. Improving clinical outcomes following fibrinolysis remains of great importance for the many patients globally for whom rapid treatment with primary PCI is not possible. For patients with acute coronary syndrome who underwent primary PCI, the PLATO trial demonstrated superior efficacy of ticagrelor relative to clopidogrel. Results in the predefined subgroup of patients with STEMI were consistent with the overall PLATO trial. Patients who received fibrinolytic therapy in the 24 hours before randomization were excluded from PLATO, and there is thus a lack of data on the safety of using ticagrelor in conjunction with fibrinolytic therapy in the first 24 hours after STEMI. The TREAT study addresses this knowledge gap; patients with STEMI who had symptom onset within the previous 24 hours and had received fibrinolytic therapy (of whom 89.4% had also received clopidogrel) were randomized to treatment with ticagrelor or clopidogrel (median time between fibrinolysis and randomization: 11.5 hours). At 30 days, ticagrelor was found to be non-inferior to clopidogrel for the primary safety outcome of Thrombolysis in Myocardial Infarction (TIMI)-defined first major bleeding. Considering together the results of the PLATO and TREAT studies, initiating or switching to treatment with ticagrelor within the first 24 hours after STEMI in patients receiving fibrinolysis is reasonable.
    Matched MeSH terms: Survival Rate/trends
  15. Yida Z, Imam MU, Ismail M
    PMID: 25475744 DOI: 10.1186/1472-6882-14-468
    Edible birds' nest (EBN) is reported to be antioxidant-rich. However, the fate of its antioxidants after oral consumption is not yet reported. To explore this, we hypothesized that EBN antioxidants are released from their matrix when subjected to in vitro simulated gastrointestinal digestion.
    Matched MeSH terms: Cell Survival/drug effects*
  16. Jasmin NH, Thin MZ, Johnson RD, Jackson LH, Roberts TA, David AL, et al.
    Adv Sci (Weinh), 2021 Jun;8(11):e2003987.
    PMID: 34105284 DOI: 10.1002/advs.202003987
    Early measurements of tissue viability after myocardial infarction (MI) are essential for accurate diagnosis and treatment planning but are challenging to obtain. Here, manganese, a calcium analogue and clinically approved magnetic resonance imaging (MRI) contrast agent, is used as an imaging biomarker of myocardial viability in the first hours after experimental MI. Safe Mn2+ dosing is confirmed by measuring in vitro beating rates, calcium transients, and action potentials in cardiomyocytes, and in vivo heart rates and cardiac contractility in mice. Quantitative T1 mapping-manganese-enhanced MRI (MEMRI) reveals elevated and increasing Mn2+ uptake in viable myocardium remote from the infarct, suggesting MEMRI offers a quantitative biomarker of cardiac inotropy. MEMRI evaluation of infarct size at 1 h, 1 and 14 days after MI quantifies myocardial viability earlier than the current gold-standard technique, late-gadolinium-enhanced MRI. These data, coupled with the re-emergence of clinical Mn2+ -based contrast agents open the possibility of using MEMRI for direct evaluation of myocardial viability early after ischemic onset in patients.
    Matched MeSH terms: Cell Survival/drug effects*
  17. Adewoyin M, Mohsin SM, Arulselvan P, Hussein MZ, Fakurazi S
    Drug Des Devel Ther, 2015;9:2475-84.
    PMID: 25995619 DOI: 10.2147/DDDT.S72716
    BACKGROUND: Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA.

    METHODS: In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined.

    RESULTS: Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only.

    CONCLUSION: The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control.

    Matched MeSH terms: Cell Survival/drug effects
  18. Lim SM, Goh YM, Kuan WB, Loh SP
    Lipids Health Dis, 2014 Nov 03;13:169.
    PMID: 25367070 DOI: 10.1186/1476-511X-13-169
    BACKGROUND: This study investigated anti-obesity effects of seven different solvent (n-hexane, toluene, dicholoromethane, ethyl acetate, absolute methanol, 80% methanol and deionized water) extracts of germinated brown rice (GBR) on pancreatic lipase activity, adipogenesis and lipolysis in 3T3-L1 adipocytes.

    METHODS: GBR were extracted separately by employing different solvents with ultrasound-assisted. Pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm. Adipogenesis and lipolysis were assayed in fully differentiated 3T3-L1 adipocytes by using Oil Red O staining and glycerol release measurement.

    RESULTS: GBR extract using hexane showed the highest inhibitory effect (13.58 ± 0.860%) at concentration of 200 μg/ml followed by hexane extract at 100 μg/ml (9.98 ± 1.048%) while ethyl acetate extract showed the lowest (2.62 ± 0.677%) at concentration of 200 μg/ml on pancreatic lipase activity. Water extract at 300 μg/ml showed 61.55 ± 3.824% of Oil Red O staining material (OROSM), a marker of adipogenesis. It significantly decrease (p 

    Matched MeSH terms: Cell Survival/drug effects
  19. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN
    Int J Nanomedicine, 2014;9:121-7.
    PMID: 24379670 DOI: 10.2147/IJN.S52306
    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria.
    Matched MeSH terms: Cell Survival/drug effects
  20. Inayat-Hussain SH, Wong LT, Chan KM, Rajab NF, Din LB, Harun R, et al.
    Toxicol Lett, 2009 Dec 15;191(2-3):118-22.
    PMID: 19698770 DOI: 10.1016/j.toxlet.2009.08.012
    Goniothalamin, a styryllactone, has been shown to induce cytotoxicity via apoptosis in several tumor cell lines. In this study, we have examined the potential role of several genes, which were stably transfected into T-cell lines and which regulate apoptosis in different ways, on goniothalamin-induced cell death. Overexpression of full-length receptor for activated protein C-kinase 1 (RACK-1) and pc3n3, which up-regulates endogenous RACK-1, in both Jurkat and W7.2 T cells resulted in inhibition of goniothalamin-induced cell death as assessed by MTT and clonogenic assays. However, overexpression of rFau (antisense sequence to Finkel-Biskis-Reilly murine sarcoma virus-associated ubiquitously expressed gene) in W7.2 cells did not confer resistance to goniothalamin-induced cell death. Etoposide, a clinically used cytotoxic agent, was equipotent in causing cytotoxicity in all the stable transfectants. Assessment of DNA damage by Comet assay revealed goniothalamin-induced DNA strand breaks as early as 1 h in vector control but this effect was inhibited in RACK-1 and pc3n3 stably transfected W7.2 cells. This data demonstrate that RACK-1 plays a crucial role in regulating cell death signalling pathways induced by goniothalamin.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links