Displaying publications 481 - 500 of 536 in total

Abstract:
Sort:
  1. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    Int J Pharm, 2020 Aug 30;586:119499.
    PMID: 32505580 DOI: 10.1016/j.ijpharm.2020.119499
    The tight junctions between capillary endothelial cells of the blood-brain barrier (BBB) restricts the entry of therapeutics into the brain. Potential of the intranasal delivery tool has been explored in administering the therapeutics directly to the brain, thus bypassing BBB. The objective of this study was to develop and optimize an intranasal mucoadhesive nanoemulsion (MNE) of asenapine maleate (ASP) in order to enhance the nasomucosal adhesion and direct brain targetability for improved efficacy and safety. Box-Behnken statistical design was used to recognize the crucial formulation variables influencing droplet size, size distribution and surface charge of ASP-NE. ASP-MNE was obtained by incorporating GRAS mucoadhesive polymer, Carbopol 971 in the optimized NE. Optimized ASP-MNE displayed spherical morphology with a droplet size of 21.2 ± 0.15 nm and 0.355 polydispersity index. Improved ex-vivo permeation was observed in ASP-NE and ASP-MNE, compared to the ASP-solution. Finally, the optimized formulation was found to be safe in ex-vivo ciliotoxicity study on sheep nasal mucosa. The single-dose pharmacokinetic study in male Wistar rats revealed a significant increase in concentration of ASP in the brain upon intranasal administration of ASP-MNE, with a maximum of 284.33 ± 5.5 ng/mL. The time required to reach maximum brain concentration (1 h) was reduced compared to intravenous administration of ASP-NE (3 h). Furthermore, it has been established during the course of present study, that the brain targeting capability of ASP via intranasal administration had enhanced drug-targeting efficiency and drug-targeting potential. In the animal behavioral studies, no extrapyramidal symptoms were observed after intranasal administration of ASP-MNE, while good locomotor activity and hind-limb retraction test established its antipsychotic activity in treated animals. Thus, it can be concluded that the developed intranasal ASP-MNE could be used as an effective and safe tool for brain targeting of ASP in the treatment of psychotic disorders.
    Matched MeSH terms: Drug Delivery Systems*
  2. Wong TW, Sumiran N
    J Pharm Pharmacol, 2014 May;66(5):646-57.
    PMID: 24329400 DOI: 10.1111/jphp.12192
    Objective: Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties.

    Methods: The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated.

    Key findings: Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation.

    Conclusion: Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles.

    Keywords: Tween 80; alginate; insulin; nanoparticle; pectin.
    Matched MeSH terms: Drug Delivery Systems*
  3. Yang CL, Chao YJ, Wang HC, Hou YC, Chen CG, Chang CC, et al.
    Nanomedicine, 2021 10;37:102450.
    PMID: 34332115 DOI: 10.1016/j.nano.2021.102450
    Epigenetic inhibitors have shown anticancer effects. Combination chemotherapy with epigenetic inhibitors has shown high effectiveness in gastric cancer clinical trials, but severe side effect and local progression are the causes of treatment failure. Therefore, we sought to develop an acidity-sensitive drug delivery system to release drugs locally to diminish unfavorable outcome of gastric cancer. In this study, we showed that, as compared with single agents, combination treatment with the demethylating agent 5'-aza-2'-deoxycytidine and HDAC inhibitors Trichostatin A or LBH589 decreased cell survival, blocked cell cycle by reducing number of S-phase cells and expression of cyclins, increased cell apoptosis by inducing expression of Bim and cleaved Caspase 3, and reexpressed tumor suppressor genes more effectively in MGCC3I cells. As a carrier, reconstituted apolipoprotein B lipoparticles (rABLs) could release drugs in acidic environments. Orally administrated embedded drugs not only showed inhibitory effects on gastric tumor growth in a syngeneic orthotopic mouse model, but also reduced the hepatic and renal toxicity. In conclusion, we have established rABL-based nanoparticles embedded epigenetic inhibitors for local treatment of gastric cancer, which have good therapeutic effects but do not cause severe side effects.
    Matched MeSH terms: Drug Delivery Systems*
  4. Rehman K, Zulfakar MH
    Pharm Res, 2017 01;34(1):36-48.
    PMID: 27620176 DOI: 10.1007/s11095-016-2036-8
    PURPOSE: To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis.

    METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.

    RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.

    CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

    Matched MeSH terms: Drug Delivery Systems/methods
  5. Tan DM, Fu JY, Wong FS, Er HM, Chen YS, Nesaretnam K
    Nanomedicine (Lond), 2017 Oct;12(20):2487-2502.
    PMID: 28972460 DOI: 10.2217/nnm-2017-0182
    AIM: To develop 6-O-palmitoyl-ascorbic acid-based niosomes targeted to transferrin receptor for intravenous administration of tocotrienols (T3) in breast cancer.

    MATERIALS & METHODS: Niosomes were prepared using film hydration and ultrasonication methods. Transferrin was coupled to the surface of niosomes via chemical linker. Nanovesicles were characterized for size, zeta potential, morphology, stability and biological efficacy.

    RESULTS: When evaluated in MDA-MB-231 cells, entrapment of T3 in niosomes caused 1.5-fold reduction in IC50 value compared with nonformulated T3. In vivo, the average tumor volume of mice treated with tumor-targeted niosomes was 12-fold lower than that of untreated group, accompanied by marked downregulation of three genes involved in metastasis.

    CONCLUSION: Findings suggested that tumor-targeted niosomes served as promising delivery system for T3 in cancer therapy.

    Matched MeSH terms: Drug Delivery Systems/methods
  6. Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071389 DOI: 10.3390/ijms22115786
    Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Drug Delivery Systems/methods*
  7. Muthoosamy K, Abubakar IB, Bai RG, Loh HS, Manickam S
    Sci Rep, 2016 Sep 06;6:32808.
    PMID: 27597657 DOI: 10.1038/srep32808
    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI 
    Matched MeSH terms: Drug Delivery Systems/methods
  8. Tan KX, Danquah MK, Sidhu A, Yon LS, Ongkudon CM
    Curr Drug Targets, 2018 02 08;19(3):248-258.
    PMID: 27321771 DOI: 10.2174/1389450117666160617120926
    BACKGROUND: The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability.

    OBJECTIVE: The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release.

    RESULTS: This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects.

    CONCLUSION: A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with stage-wise delivery mechanism is presented to illustrate the potential efficacy of aptamer- polymer cargos for enhanced cell targeting and drug delivery.

    Matched MeSH terms: Drug Delivery Systems
  9. Abeer MM, Amin MC, Lazim AM, Pandey M, Martin C
    Carbohydr Polym, 2014 Sep 22;110:505-12.
    PMID: 24906785 DOI: 10.1016/j.carbpol.2014.04.052
    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications.
    Matched MeSH terms: Drug Delivery Systems
  10. Wong TW, Colombo G, Sonvico F
    AAPS PharmSciTech, 2011 Mar;12(1):201-14.
    PMID: 21194013 DOI: 10.1208/s12249-010-9564-z
    Colon cancer is the fourth most common cancer globally with 639,000 deaths reported annually. Typical chemotherapy is provided by injection route to reduce tumor growth and metastasis. Recent research investigates the oral delivery profiles of chemotherapeutic agents. In comparison to injection, oral administration of drugs in the form of a colon-specific delivery system is expected to increase drug bioavailability at target site, reduce drug dose and systemic adverse effects. Pectin is suitable for use as colon-specific drug delivery vehicle as it is selectively digested by colonic microflora to release drug with minimal degradation in upper gastrointestinal tract. The present review examines the physicochemical attributes of formulation needed to retard drug release of pectin matrix prior to its arrival at colon, and evaluate the therapeutic value of pectin matrix in association with colon cancer. The review suggests that multi-particulate calcium pectinate matrix is an ideal carrier to orally deliver drugs for site-specific treatment of colon cancer as (1) crosslinking of pectin by calcium ions in a matrix negates drug release in upper gastrointestinal tract, (2) multi-particulate carrier has a slower transit and a higher contact time for drug action in colon than single-unit dosage form, and (3) both pectin and calcium have an indication to reduce the severity of colon cancer from the implication of diet and molecular biology studies. Pectin matrix demonstrates dual advantages as drug carrier and therapeutic for use in treatment of colon cancer.
    Matched MeSH terms: Drug Delivery Systems
  11. Wong TW
    Recent Pat Drug Deliv Formul, 2009 Jan;3(1):8-25.
    PMID: 19149726 DOI: 10.2174/187221109787158346
    The global burden of diabetes is estimated to escalate from about 171 million in 2000 to 366 million people in 2030. The routine of diabetes treatment by injection of insulin incurs pain and has been one major factor negating the quality of life of diabetic patients. The possibility of administering insulin via alternative routes such as oral and nasal pathways has been investigated over the years, but with insulin experiencing risks of enzymatic degradation and poor transmucosal absorption. This leads to the rising needs to develop new formulation strategies emphasizing on the assembly of insulin and excipients into a physical structure to maintain the stability and increase the bioavailability of insulin. Chitosan and its derivatives or salts have been widely investigated as functional excipients of delivering insulin via oral, nasal and transdermal routes. The overview of various recent patented strategies on non-injection insulin delivery denotes the significance of chitosan for its mucoadhesive and able to protect the insulin from enzymatic degradation, prolong the retention time of insulin, as well as, open the inter-epithelial tight junction to facilitate systemic insulin transport. The chitosan can be employed to strengthen the physicochemical stability of insulin and multi-particulate matrix. The introduction of chitosan coat or co-formulation of chitosan with cationic gelatin or electrolytes which provide solidified or partially crosslinked structures retain and/or enhance the positive charges of dosage form necessary to induce mucoadhesiveness. The chitosan is modifiable chemically to produce water-soluble low molecular weight polymer which renders insulin able to be processed under mild conditions, and sulphated chitosan which markedly opens the paracellular channels for insulin transport. Combination of chitosan and fatty acid as hydrophobic nanoparticles promotes the insulin absorption via lymphoid tissue. Attainment of optimized formulations with higher levels of pharmacological bioavailability is deemed possible in future through targeted delivery of insulin using chitosan with specific adhesiveness to the intended absorption mucosa.
    Matched MeSH terms: Drug Delivery Systems
  12. Winie T, Arof AK
    Spectrochim Acta A Mol Biomol Spectrosc, 2006 Mar 1;63(3):677-84.
    PMID: 16157506
    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF(3)SO(3))-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF(3)SO(3) interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR)(2), CONHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF(3)SO(3) has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li(+) ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.
    Matched MeSH terms: Drug Delivery Systems
  13. Dua K, Gupta G, Chellapan DK, Bebawy M, Collet T
    Panminerva Med, 2018 Dec;60(4):237-238.
    PMID: 30563307 DOI: 10.23736/S0031-0808.18.03435-3
    Matched MeSH terms: Drug Delivery Systems
  14. Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM
    Panminerva Med, 2018 Dec;60(4):230-231.
    PMID: 30563304 DOI: 10.23736/S0031-0808.18.03459-6
    Matched MeSH terms: Drug Delivery Systems
  15. Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al.
    Chem Biol Interact, 2019 Feb 01;299:168-178.
    PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009
    Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
    Matched MeSH terms: Drug Delivery Systems
  16. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
    Matched MeSH terms: Drug Delivery Systems
  17. Ngan CL, Asmawi AA
    Drug Deliv Transl Res, 2018 10;8(5):1527-1544.
    PMID: 29881970 DOI: 10.1007/s13346-018-0550-4
    Inhalation therapy of lipid-based carriers has great potential in direct target towards the root of respiratory diseases, which make them superior over other drug deliveries. With the successful entry of lipid carriers into the target cells, drugs can be absorbed in a sustained release manner and yield extended medicinal effects. Nevertheless, translation of inhalation therapy from laboratory to clinic especially in drug delivery remains a key challenge to the formulators. An ideal drug vehicle should safeguard the drugs from any premature elimination, facilitate cellular uptake, and promote maximum drug absorption with negligible toxicity. Despite knowing that lung treatment can be done via systemic delivery, pulmonary administration is capable of enhancing drug retention within the lungs, while minimizing systemic toxicity with local targeting. Current inhalation therapy of lipid-based carriers can be administered either intratracheally or intranasally to reach deep lung. However, the complex dimensions of lung architectural and natural defense mechanism poise major barriers towards targeted pulmonary delivery. Delivery systems have to be engineered in a way to tackle various diseases according to their biological conditions. This review highlights on the developmental considerations of lipid-based delivery systems cater for the pulmonary intervention of different lung illnesses.
    Matched MeSH terms: Drug Delivery Systems
  18. Ahmad K, Win T, Jaffri JM, Edueng K, Taher M
    AAPS PharmSciTech, 2018 Jan;19(1):371-383.
    PMID: 28744617 DOI: 10.1208/s12249-017-0843-9
    This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
    Matched MeSH terms: Drug Delivery Systems
  19. Zhuo F, Abourehab MAS, Hussain Z
    Carbohydr Polym, 2018 Oct 01;197:478-489.
    PMID: 30007638 DOI: 10.1016/j.carbpol.2018.06.023
    Nano-delivery systems have gained remarkable recognition for targeted delivery of therapeutic payload, reduced off-target effects, and improved biopharmaceutical profiles of drugs. Therefore, we aimed to fabricate polymeric nanoparticles (NPs) to deliver tacrolimus (TCS) to deeper layers of the skin in order to alleviate its systemic toxicity and improved therapeutic efficacy against atopic dermatitis (AD). To further optimize the targeting efficiency, TCS-loaded NPs were coated with hyaluronic acid (HA). Following the various physicochemical optimizations, the prepared HA-TCS-CS-NPs were tested for in vitro drug release kinetics, drug permeation across the stratum corneum, percentage of drug retained in the epidermis and dermis, and anti-AD efficacy. Results revealed that HA-TCS-CS-NPs exhibit sustained release profile, promising drug permeation ability, improved skin retention, and pronounced anti-AD efficacy. Conclusively, we anticipated that HA-based modification of TCS-CS-NPs could be a promising therapeutic approach for rationalized management of AD, particularly in children as well as in adults having steroid phobia.
    Matched MeSH terms: Drug Delivery Systems
  20. Samak YO, Santhanes D, El-Massik MA, Coombes AGA
    J Microencapsul, 2019 Mar;36(2):204-214.
    PMID: 31164027 DOI: 10.1080/02652048.2019.1620356
    Nigella sativa extract (NSE) was incorporated in alginate microcapsules using aerosolisation and homogenisation methods, respectively, with the aim of delivering high concentrations of the active species, thymoquinone (TQ), directly to sites of inflammation in the colon following oral administration. Encapsulation of NSE was accomplished either by direct loading or diffusion into blank microparticles. Microcapsules in the size range 40-60 µm exhibited significantly higher NSE loading up to 42% w/w and encapsulation efficiency (EE) up to 63% when the extract was entrapped by direct encapsulation compared with 4.1 w/w loading, 6.2% EE when NSE was incorporated by diffusion loading. Sequential exposure of samples to simulated intestinal fluids (SIFs) revealed that the microcapsules suppressed NSE release in simulated gastric fluid (SGF) for 2 h and SIF for 4 h and liberated most of the NSE content (80%) in simulated colonic fluid (SCF) over 18 h. NSE released in SCF at 12 h exhibited antioxidant activity, when measured using the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay at levels comparable with the activity of unencapsulated extract. These findings demonstrate the potential of oral alginate microcapsules as highly efficient, targeted carriers for colonic delivery of NSE in the treatment of inflammatory bowel disease.
    Matched MeSH terms: Drug Delivery Systems
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links