Displaying publications 481 - 500 of 943 in total

Abstract:
Sort:
  1. Bachok MF, Yusof BN, Ismail A, Hamid AA
    Asia Pac J Clin Nutr, 2014;23(3):369-76.
    PMID: 25164446 DOI: 10.6133/apjcn.2014.23.3.01
    Ulam refers to a group of traditional Malaysian plants commonly consumed as a part of a meal, either in the raw form or after a short blanching process. Many types of ulam are thought to possess blood glucose-lowering properties, but relatively little is known on the effectiveness of ulam in modulating blood glucose levels in humans. This review aims to systematically evaluate the effectiveness of ulam in modulating blood glucose levels in humans. A literature review was conducted using multiple databases with no time restriction. Eleven studies were retrieved based on a priori inclusion and exclusion criteria. In these 11 studies, only Momordica charantia, locally known as "peria katak", was extensively studied, followed by Centella asiatica, locally known as "daun pegaga", and Alternanthera sessilis, locally known as "kermak putih". Of the 11 studies, 9 evaluated the effectiveness of M. charantia on blood glucose parameters, and 7 of which showed significant improvement in at least one parameter of blood glucose concentration. The remaining 2 studies reported nonsignificant improvements in blood glucose parameters, despite having high-quality study design according to Jadad scale. None of the studies related to C. asiatica and A. sessilis showed significant improvement in blood glucose-related parameters. Current clinical evidence does not support the popular claim that ulam has glucose-lowering effects, not even for M. charantia. Hence, further clinical investigation is needed to verify the glucose modulation effect of M. charantia, C. asiatica, and A. sessilis.
    Matched MeSH terms: Plants, Medicinal
  2. Aala F, Yusuf UK, Nulit R, Rezaie S
    Iran J Basic Med Sci, 2014 Mar;17(3):150-4.
    PMID: 24847416
    Trichophyton rubrum (T. rubrum) is one of the most common dermatophytes worldwide. This fungus invaded skin appendages of humans and animals. Recently, resistance to antifungal drugs as well as appearance of side effects due to indication of these kinds of antibiotics has been reported. Besides, using some plant extracts have been indicated in herbal medicine as an alternative treatment of these fungal infections. The aim of this study was to investigate the effects of Garlic (Allium sativum) and pure allicin on the growth of hypha in T. rubrum using Electron miscroscopy.
    Matched MeSH terms: Plants, Medicinal
  3. Azad MA, Rabbani MG, Amin L, Sidik NM
    Int J Genomics, 2013;2013:235487.
    PMID: 24066284 DOI: 10.1155/2013/235487
    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
    Matched MeSH terms: Plants, Genetically Modified
  4. Mahdavi F, Sariah M, Maziah M
    Appl Biochem Biotechnol, 2012 Feb;166(4):1008-19.
    PMID: 22183565 DOI: 10.1007/s12010-011-9489-3
    The possibility of controlling Fusarium wilt--caused by Fusarium oxysporum sp. cubensec (race 4)--was investigated by genetic engineering of banana plants for constitutive expression of rice thaumatin-like protein (tlp) gene. Transgene was introduced to cauliflower-like bodies' cluster, induced from meristemic parts of male inflorescences, using particle bombardment with plasmid carrying a rice tlp gene driving by the CaMV 35S promoter. Hygromycin B was used as the selection reagent. The presence and integration of rice tlp gene in genomic DNA confirmed by PCR and Southern blot analyses. RT-PCR revealed the expression of transgene in leaf and root tissues in transformants. Bioassay of transgenic banana plants challenged with Fusarium wilt pathogen showed that expression of TLP enhanced resistance to F. oxysporum sp. cubensec (race 4) compared to control plants.
    Matched MeSH terms: Plants, Genetically Modified/genetics*; Plants, Genetically Modified/immunology; Plants, Genetically Modified/microbiology
  5. Wong JH, Namasivayam P, Abdullah MP
    Planta, 2012 Feb;235(2):267-77.
    PMID: 21874349 DOI: 10.1007/s00425-011-1506-9
    Phenylalanine ammonia lyase (PAL) plays a major role in plant growth, development and adaptation. In Arabidopsis thaliana, the enzyme is encoded by four genes, namely PAL1, PAL2, PAL3, and PAL4 with PAL1 and PAL2 being closely related phylogenetically and functionally. PAL1 promoter activities are associated with plant development and are inducible by various stress agents. However, PAL2 promoter activities have not been functionally analysed. Here, we show that the PAL2 promoter activities are associated with the structural development of a plant and its organs. This function was inducible in an organ-specific manner by the avirulent strain of Pseudomonas syringae pv. tomato (JL1065). The PAL2 promoter was active throughout the course of the plant development particularly in the root, rosette leaf, and inflorescence stem that provide the plant with structural support. In aerial organs, the levels of PAL2 promoter activities were negatively correlated with relative positions of the organs to the rosette leaves. The promoter was inducible in the root following an inoculation by JL1065 in the leaf suggesting PAL2 to be part of an induced defence system. Our results demonstrate how the PAL2 promoter activities are being coordinated and synchronised for the structural development of the plant and its organs based on the developmental programme. Under certain stress conditions the activity may be induced in favour of certain organs.
    Matched MeSH terms: Plants, Genetically Modified/enzymology; Plants, Genetically Modified/genetics; Plants, Genetically Modified/growth & development
  6. Tan HL, Chan KG, Pusparajah P, Lee LH, Goh BH
    Front Pharmacol, 2016;7:52.
    PMID: 27014066 DOI: 10.3389/fphar.2016.00052
    Gynura procumbens (Lour.) Merr. (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation, and hypertension. Based on the traditional uses of G. procumbens, it seems to possess high therapeutic potential for treatment of various diseases making it a target for pharmacological studies aiming to validate and provide scientific evidence for the traditional claims of its efficacy. Although there has been considerable progress in the research on G. procumbens, to date there is no review paper gathering the reported biological activities of G. procumbens. Hence, this review aims to provide an overview of the biological activities of G. procumbens based on reported in vitro and in vivo studies. In brief, G. procumbens has been reported to exhibit antihypertensive, cardioprotective, antihyperglycemic, fertility enhancement, anticancer, antimicrobial, antioxidant, organ protective, and antiinflammatory activity. The commercial applications of G. procumbens have also been summarized in this paper based on existing patents. The data compiled illustrate that G. procumbens is a potential natural source of compounds with various pharmacological actions which can be utilized for the development of novel therapeutic agents.
    Matched MeSH terms: Plants, Medicinal
  7. Wong FC, Tan ST, Chai TT
    Crit Rev Food Sci Nutr, 2016 Jul 29;56 Suppl 1:S162-70.
    PMID: 26193174 DOI: 10.1080/10408398.2015.1045967
    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents.
    Matched MeSH terms: Plants, Medicinal
  8. Zain RB, Ikeda N, Gupta PC, Warnakulasuriya S, van Wyk CW, Shrestha P, et al.
    J Oral Pathol Med, 1999 Jan;28(1):1-4.
    PMID: 9890449
    A variety of betel/areca nut/tobacco habits have been reviewed and categorized because of their possible causal association with oral cancer and various oral precancerous lesions and conditions, and on account of their widespread occurrence in different parts of the world. At a recent workshop in Kuala Lumpur it was recommended that "quid" be defined as "a substance, or mixture of substances, placed in the mouth or chewed and remaining in contact with the mucosa, usually containing one or both of the two basic ingredients, tobacco and/or areca nut, in raw or any manufactured or processed form." Clear delineations on contents of the quid (areca nut quid, tobacco quid, and tobacco and areca nut quid) are recommended as absolute criteria with finer subdivisions to be added if necessary. The betel quid refers to any quid wrapped in betel leaf and is therefore a specific variety of quid. The workshop proposed that quid-related lesions should be categorized conceptually into two categories: first, those that are diffusely outlined and second, those localized at the site where a quid is regularly placed. Additional or expanded criteria and guidelines were proposed to define, describe or identify lesions such as chewer's mucosa, areca nut chewer's lesion, oral submucous fibrosis and other quid-related lesions. A new clinical entity, betel-quid lichenoid lesion, was also proposed to describe an oral lichen planus-like lesion associated with the betel quid habit.
    Matched MeSH terms: Plants, Medicinal*; Plants, Toxic*
  9. Ilias IA, Negishi K, Yasue K, Jomura N, Morohashi K, Baharum SN, et al.
    J Plant Res, 2019 Mar;132(2):159-172.
    PMID: 30341720 DOI: 10.1007/s10265-018-1067-0
    Expansin is a non-enzymatic protein which plays a pivotal role in cell wall loosening by inducing stress relaxation and extension in the plant cell wall. Previous studies on Arabidopsis, Petunia × hybrida, and tomato demonstrated that the suppression of expansin gene expression reduced plant growth but expansin overexpression does not necessarily promotes growth. In this study, both expansin gene suppression and overexpression in dark-grown transgenic Arabidopsis seedlings resulted in reduced hypocotyl length at late growth stages with a more pronounced effect for the overexpression. This defect in hypocotyl elongation raises questions about the molecular effect of expansin gene manipulation. RNA-seq analysis of the transcriptomic changes between day 3 and day 5 seedlings for both transgenic lines found numerous differentially expressed genes (DEGs) including transcription factors and hormone-related genes involved in different aspects of cell wall development. These DEGs imply that the observed hypocotyl growth retardation is a consequence of the concerted effect of regulatory factors and multiple cell-wall related genes, which are important for cell wall remodelling during rapid hypocotyl elongation. This is further supported by co-expression analysis through network-centric approach of differential network cluster analysis. This first transcriptome-wide study of expansin manipulation explains why the effect of expansin overexpression is greater than suppression and provides insights into the dynamic nature of molecular regulation during etiolation.
    Matched MeSH terms: Plants, Genetically Modified
  10. Ramzi AB, Baharum SN, Bunawan H, Scrutton NS
    Front Bioeng Biotechnol, 2020;8:608918.
    PMID: 33409270 DOI: 10.3389/fbioe.2020.608918
    Increasing demands for the supply of biopharmaceuticals have propelled the advancement of metabolic engineering and synthetic biology strategies for biomanufacturing of bioactive natural products. Using metabolically engineered microbes as the bioproduction hosts, a variety of natural products including terpenes, flavonoids, alkaloids, and cannabinoids have been synthesized through the construction and expression of known and newly found biosynthetic genes primarily from model and non-model plants. The employment of omics technology and machine learning (ML) platforms as high throughput analytical tools has been increasingly leveraged in promoting data-guided optimization of targeted biosynthetic pathways and enhancement of the microbial production capacity, thereby representing a critical debottlenecking approach in improving and streamlining natural products biomanufacturing. To this end, this mini review summarizes recent efforts that utilize omics platforms and ML tools in strain optimization and prototyping and discusses the beneficial uses of omics-enabled discovery of plant biosynthetic genes in the production of complex plant-based natural products by bioengineered microbes.
    Matched MeSH terms: Plants
  11. Safni I, Subandiyah S, Fegan M
    Front Microbiol, 2018;9:419.
    PMID: 29662468 DOI: 10.3389/fmicb.2018.00419
    Ralstonia solanacearum species complex phylotype IV strains, which have been primarily isolated from Indonesia, Australia, Japan, Korea, and Malaysia, have undergone recent taxonomic and nomenclatural changes to be placed in the species Ralstonia syzygii. This species contains three subspecies; Ralstonia syzygii subsp. syzygii, a pathogen causing Sumatra disease of clove trees in Indonesia, Ralstonia syzygii subsp. indonesiensis, the causal pathogen of bacterial wilt disease on a wide range of host plants, and Ralstonia syzygii subsp. celebesensis, the causal pathogen of blood disease on Musa spp. In Indonesia, these three subspecies have devastated the cultivation of susceptible host plants which have high economic value. Limited knowledge on the ecology and epidemiology of the diseases has hindered the development of effective control strategies. In this review, we provide insights into the ecology, epidemiology and disease control of these three subspecies of Ralstonia syzygii.
    Matched MeSH terms: Plants
  12. A’attiyyah A.A., Wan Afiqah Syahirah W.G., Kannan, T.P., Suharni M., Ahmad A., Nor Azah M.A.
    MyJurnal
    Medicinal plants have healing properties and are able to synthesize various chemical compounds. These chemicals (also known as phytochemical compounds) play vital roles in determining the pharmacological properties existing in certain plants. The phytochemical compounds present in plants are associated with primary and secondary constituents. Most of the time, the secondary constituents exhibit the bioactivities in plants such as antimicrobial, antioxidant, antidiabetic, antibacterial and anti-inflammatory properties. Some common medicinal plants that have been used in curing various diseases by traditional practitioners in Malaysia are Ficus deltoidea Jack, Andrographis paniculata, Curcuma longa, Clinacanthus nutans and Eurycoma longifolia Jack. This review discusses the morphology, phytochemical compounds and phytochemical properties of selected medicinal plants in Malaysia. The plants of focus have been found to possess anti-cancer and anti-diabetic effects. This review, it is hoped will enable Malaysian researchers to explore further on the potential of these plants in investigating new and novel drugs in the future.
    Matched MeSH terms: Plants, Medicinal
  13. Abd Aziz NA, Hasham R, Sarmidi MR, Suhaimi SH, Idris MKH
    Saudi Pharm J, 2021 Feb;29(2):143-165.
    PMID: 33679177 DOI: 10.1016/j.jsps.2020.12.016
    Medicinal plants have gained much interest in the prevention and treatment of common human disease such as cold and fever, hypertension and postpartum. Bioactive compounds from medicinal plants were synthesised using effective extraction methods which have important roles in the pharmaceutical product development. Orthosiphon aristatus (OA), Eurycoma longifolia (EL) and Andrographis paniculata (AP) are among popular medicinal herbs in Southeast Asia. The major compounds for these medicinal plants are polar bioactive compounds (rosmarinic acid, eurycomanone and andrographolide) which have multiple benefits to human health. The bioactive compounds are used as a drug to function against a variety of diseases with the support of scientific evidence. This paper was intended to prepare a complete review about the extraction techniques (e.g. OA, EL and AP) of these medicinal plants based on existing studies and scientific works. Suitable solvents and techniques to obtain their major bioactive compounds and their therapeutic potentials were discussed.
    Matched MeSH terms: Plants, Medicinal
  14. Hayati F, Chabib L, Fauzi IS, Awaluddin R, Sumayya, Faizah WS, et al.
    J Pharm Bioallied Sci, 2020 10 08;12(4):457-461.
    PMID: 33679093 DOI: 10.4103/jpbs.JPBS_297_19
    Introduction: Pegagan is a traditional medicinal plant with three major bioactive properties, triterpenoid, steroids, and saponin. It has the properties of antioxidant, antistress, and wound healing. Pegagan extract is prepared in self-nanoemulsifying drug delivery systems (SNEDDS) to overcome the problem of low water-solubility level.

    Objectives: This study aimed to observe the effect of pegagan ethanolic extract SNEDDS on the development of zebrafish embryos.

    Materials and Methods: This study used 12 sets of zebrafish embryos presented in five sets of extract SNEDDS with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, five sets of SNEDDS without extract with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, a set of positive control (3.4-DCA 4 mg/L) with one control set (diluted with water), and a negative control (SNEDDS without extract). The procedure was conducted for 96 h with observations every 24 h. The parameters observed were embryonic coagulation, formation of somites, detachment of tail bud from the yolk, and abnormality of embryo.

    Results: The results showed that in 96 h the 20ppm concentration caused 100% mortality. Embryo abnormality appeared as coagulation of embryo, somite malformation, and abnormal tail.

    Discussion: There is a correlation between the concentration of SNEDDS and the incidence of embryo coagulation. The malformation in the group of pegagan extract SNEDDS is characterized by cardiac edema, somite malformation, and abnormal tail.

    Conclusion: Pegagan ethanolic extract SNEDDS of 20ppm can inhibit the development of zebrafish embryos.

    Matched MeSH terms: Plants, Medicinal
  15. Saleh MSM, Jalil J, Mustafa NH, Ramli FF, Asmadi AY, Kamisah Y
    Life (Basel), 2021 Jan 22;11(2).
    PMID: 33499128 DOI: 10.3390/life11020078
    Parkia speciosa is a food plant that grows indigenously in Southeast Asia. A great deal of interest has been paid to this plant due to its traditional uses in the treatment of several diseases. The pods contain many beneficial secondary metabolites with potential applications in medicine and cosmetics. However, studies on their phytochemical properties are still lacking. Therefore, the present study was undertaken to profile the bioactive compounds of P. speciosa pods collected from six different regions of Malaysia through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) and α-glucosidase inhibitory potential. This study applied metabolomics to elucidate the differences between P. speciosa populations found naturally in the different locations and to characterize potential α-glucosidase inhibitors from P. speciosa pods. P. speciosa collected from different regions of Malaysia showed good α-glucosidase inhibitory activity, with a median inhibitory concentration (IC50) of 0.45-0.76 μg/mL. The samples from the northern and northeastern parts of Peninsular Malaysia showed the highest activity. Using UHPLC-QTOF-MS/MS analysis, 25 metabolites were identified in the pods of P. speciosa. The findings unveiled that the pods of P. speciosa collected from different locations exhibit different levels of α-glucosidase inhibitory activity. The pods are a natural source of potent antidiabetic bioactive compounds.
    Matched MeSH terms: Plants, Edible
  16. Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL
    PeerJ, 2021;9:e10816.
    PMID: 33777509 DOI: 10.7717/peerj.10816
    Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach.

    Methods: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts.

    Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

    Matched MeSH terms: Plants
  17. Fahimee J, Badrulisham AS, Zulidzham MS, Reward NF, Muzammil N, Jajuli R, et al.
    Insects, 2021 Feb 28;12(3).
    PMID: 33671045 DOI: 10.3390/insects12030205
    Honey quality is the main criterion used for evaluating honey production in the stingless bee Heterotrigona itama, and it is correlated with the plant species consumed as its main diet. The objective of this study was to obtain the metabarcode data from 12 populations of H. itama species throughout Malaysia (Borneo and Peninsular Malaysia) using the trnL marker. A total of 262 species under 70 families and five phyla of plants were foraged by H. itama in the studied populations. Spermatophyta and Magnoliophyta were recorded as the two most abundant phyla foraged, at 55.95% and 32.39%, respectively. Four species, Garcinia oblongifolia, Muntingia calabura, Mallotus pellatus, and Pinus squamata, occurred abundantly and were consumed by H. itama in all the populations. These data are considered as a fundamental finding that is specific to the diet of H. itama for strategizing the management of the domestication process specifically in a mono-cropping system and in a netted structure. Thus, based on these findings, we recommend Momordica charantia, Melastoma sp., and Cucumis sativa as the best choices of food plant species to be planted and utilized by H. itama in meliponiculture.
    Matched MeSH terms: Plants, Edible
  18. Kamarul Zaman MA, Azzeme AM, Ramle IK, Normanshah N, Ramli SN, Shaharuddin NA, et al.
    Plants (Basel), 2020 Dec 14;9(12).
    PMID: 33327608 DOI: 10.3390/plants9121772
    Polyalthia bullata is an endangered medicinal plant species. Hence, establishment of P. bullata callus culture is hoped to assist in mass production of secondary metabolites. Leaf and midrib were explants for callus induction. Both of them were cultured on Murashige and Skoog (MS) and Woody Plant Medium (WPM) containing different types and concentrations of auxins (2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA), picloram, and dicamba). The callus produced was further multiplied on MS and WPM supplemented with different concentrations of 2,4-D, NAA, picloram, dicamba, indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA) media. The quantification of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant capacity was further carried out on P. bullata callus, and the results were subjected to correlation analysis. Among the media, the WPM + 16.56 µM picloram (53.33 ± 22.06%) was the best for callus induction while MS + 30 µM dicamba was the best for callus multiplication. The TPC, TFC, and EC50 of DPPH scavenging activity were determined at 0.657 ± 0.07 mg GAE/g FW, 0.491 ± 0.03 mg QE/g, and 85.59 ± 6.09 µg/mL in P. bullata callus, respectively. The positive correlation between DPPH scavenging activity with TPC was determined at r = 0.869, and that of TFC was at r = 0.904. Hence, the P. bullata callus has an ability to accumulate antioxidants. It therefore can be a medium for secondary metabolites production.
    Matched MeSH terms: Plants, Medicinal
  19. Tarmizi AAA, Wagiran A, Mohd Salleh F, Chua LS, Abdullah FI, Hasham R, et al.
    Plants (Basel), 2021 Apr 07;10(4).
    PMID: 33917172 DOI: 10.3390/plants10040717
    Labisia pumila is a precious herb in Southeast Asia that is traditionally used as a health supplement and has been extensively commercialized due to its claimed therapeutic properties in boosting a healthy female reproductive system. Indigenous people used these plants by boiling the leaves; however, in recent years it has been marketed as powdered or capsuled products. Accordingly, accuracy in determination of the authenticity of these modern herbal products has faced great challenges. Lack of authenticity is a public health risk because incorrectly used herbal species can cause adverse effects. Hence, any measures that may aid product authentication would be beneficial. Given the widespread use of Labisia herbal products, the current study focuses on authenticity testing via an integral approach of DNA barcoding and qualitative analysis using HPLC. This study successfully generated DNA reference barcodes (ITS2 and rbcL) for L. pumila var. alata and pumila. The DNA barcode that was generated was then used to identify species of Labisia pumila in herbal medicinal products, while HPLC was utilized to determine their quality. The findings through the synergistic approach (DNA barcode and HPLC) implemented in this study indicate the importance of both methods in providing the strong evidence required for the identification of true species and to examine the authenticity of such herbal medicinal products.
    Matched MeSH terms: Plants, Medicinal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links