Displaying publications 5061 - 5080 of 10396 in total

Abstract:
Sort:
  1. Ng CH, Lee SL, Ng KK, Muhammad N, Ratnam W
    J Genet, 2009 Apr;88(1):25-31.
    PMID: 19417541
    The mating system and seed variation of Acacia hybrid (A. mangium x A. auriculiformis) were studied using allozymes and random amplified polymorphic DNA (RAPD) markers, respectively. Multi-locus outcrossing rate estimations indicated that the hybrid was predominantly outcrossed (mean+/- s.e. t(m) = 0.86+/-0.01). Seed variation was investigated using 35 polymorphic RAPD fragments. An analysis of molecular variance (AMOVA) revealed the highest genetic variation among seeds within a pod (66%-70%), followed by among pods within inflorescence (29%-37%), and the least variation among inflorescences within tree (1%). In addition, two to four RAPD profiles could be detected among seeds within pod. Therefore, the results suggest that a maximum of four seeds per pod could be sampled for the establishment of a mapping population for further studies.
    Matched MeSH terms: DNA, Plant/chemistry
  2. Goh CF, Moffat JG, Craig DQM, Hadgraft J, Lane ME
    Mol Pharm, 2019 01 07;16(1):359-370.
    PMID: 30525649 DOI: 10.1021/acs.molpharmaceut.8b01027
    Drug crystallization on and in the skin has been reported following application of topical or transdermal formulations. This study explored novel probe-based approaches including localized nanothermal analysis (nano-TA) and photothermal microspectroscopy (PTMS) to investigate and locate drug crystals in the stratum corneum (SC) of porcine skin following application of simple ibuprofen (IBU) formulations. We also conducted in vitro skin permeation studies and tape stripping. The detection of drug crystals in the SC on tape strips was confirmed using localized nano-TA, based on the melting temperature of IBU. The melting of IBU was also evident as indicated by a double transition and confirmed the presence of drug crystals in the SC. The single point scans of PTMS on the tape strips allowed collection of the photothermal FTIR spectra of IBU, confirming the existence of drug crystals in the skin. The combined methods also indicated that drug crystallized in the SC at a depth of ∼4-7 μm. Future studies will examine the potential of these techniques to probe crystallization of other commonly used actives in topical and transdermal formulations.
    Matched MeSH terms: Ibuprofen/chemistry
  3. Pang WC, Ramli ANM, Hamid AAA
    J Mol Model, 2020 May 16;26(6):142.
    PMID: 32417971 DOI: 10.1007/s00894-020-04398-1
    Fruit bromelain is a cysteine protease accumulated in pineapple fruits. This proteolytic enzyme has received high demand for industrial and therapeutic applications. In this study, fruit bromelain sequences QIM61759, QIM61760 and QIM61761 were retrieved from the National Center for Biotechnology Information (NCBI) Genbank Database. The tertiary structure of fruit bromelain QIM61759, QIM61760 and QIM61761 was generated by using MODELLER. The result revealed that the local stereochemical quality of the generated models was improved by using multiple templates during modelling process. Moreover, by comparing with the available papain model, structural analysis provides an insight on how pro-peptide functions as a scaffold in fruit bromelain folding and contributing to inactivation of mature protein. The structural analysis also disclosed the similarities and differences between these models. Lastly, thermal stability of fruit bromelain was studied. Molecular dynamics simulation of fruit bromelain structures at several selected temperatures demonstrated how fruit bromelain responds to elevation of temperature.
    Matched MeSH terms: Bromelains/chemistry
  4. Roselt P, Cullinane C, Noonan W, Elsaidi H, Eu P, Wiebe LI
    Molecules, 2020 Dec 03;25(23).
    PMID: 33287202 DOI: 10.3390/molecules25235700
    Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, β-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E's biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.
    Matched MeSH terms: Antioxidants/chemistry; Fluorides/chemistry*; Fluorine Radioisotopes/chemistry*; Radiochemistry/methods; Vitamin E/chemistry*; Molecular Probes/chemistry; gamma-Tocopherol/chemistry; Tocotrienols/chemistry*
  5. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Gastrointestinal Agents/chemistry; Plant Extracts/chemistry; Seeds/chemistry*; Stomach/chemistry; Free Radical Scavengers/chemistry; Protective Agents/chemistry; Chenopodium quinoa/chemistry*
  6. Samson KLI, Loh SP, Khor GL, Mohd Shariff Z, Yelland LN, Leemaqz S, et al.
    BMJ Open, 2020 02 05;10(2):e034598.
    PMID: 32029499 DOI: 10.1136/bmjopen-2019-034598
    INTRODUCTION: Folic acid (0.4 mg) taken prior to and during early pregnancy reduces the risk of neural tube defects (NTDs). Because these birth defects occur early in pregnancy, before women may know they are pregnant, many countries have mandated the addition of folic acid to food staples. In countries where fortification is not possible, and weekly iron folic acid programmes exist to reduce anaemia, the WHO recommends that 2.8 mg (7×0.4 mg) folic acid be given instead of the current weekly practice of 0.4 mg. Currently, there is a lack of evidence to support if the 2.8 mg folic acid per week dose is sufficient to raise erythrocyte folate concentrations to a level associated with a reduced risk of a NTD-affected pregnancy. We aim to conduct a three-arm randomised controlled trial to determine the effect of weekly folic acid with iron on erythrocyte folate, a biomarker of NTD risk.

    METHODS AND ANALYSIS: We will recruit non-pregnant women (n=300; 18-45 years) from Selangor, Malaysia. Women will be randomised to receive either 2.8, 0.4 or 0.0 (placebo) mg folic acid with 60 mg iron weekly for 16 weeks, followed by a 4-week washout period. The primary outcome will be erythrocyte folate concentration at 16 weeks and the mean concentration will be compared between randomised treatment groups (intention-to-treat) using a linear regression model adjusting for the baseline measure.

    ETHICS AND DISSEMINATION: Ethical approval was obtained from the University of British Columbia (H18-00768) and Universiti Putra Malaysia (JKEUPM-2018-255). The results of this trial will be presented at scientific conferences and published in peer-reviewed journals.

    TRIAL REGISTRATION NUMBERS: ACTRN12619000818134 and NMRR-19-119-45736.

    Matched MeSH terms: Erythrocytes/chemistry*
  7. Tin HS, Palaniveloo K, Anilik J, Vickneswaran M, Tashiro Y, Vairappan CS, et al.
    Microb Ecol, 2018 Feb;75(2):459-467.
    PMID: 28779295 DOI: 10.1007/s00248-017-1043-6
    Decline in forest productivity due to forest conversion is defining the Bornean landscape. Responses of bacterial communities due to land-use changes are vital and could define our understanding of ecosystem functions. This study reports the changes in bacterial community structure in organic soil (0-5 cm; O-Horizon) and organic-mineral soil (5-15 cm; A-Horizon) across Maliau Basin Conservation Area old growth forest (MBOG), Fragment E logged forest (FELF) located in Kalabakan Forest Reserve to Benta Wawasan oil palm plantation (BWOP) using two-step PCR amplicon analysis of bacteria DNA on Illumina Miseq next generation sequencing. A total of 30 soil samples yielded 893,752-OTU reads at ≥97% similarity from 5,446,512 good quality sequences. Soil from BWOP plantation showed highest unshared OTUs for organic (49.2%) and organic-mineral (50.9%) soil. MBOG soil showed a drop in unshared OTUs between organic (48.6%) and organic-mineral (33.9%). At phylum level, Proteobacteria dominated MBOG but shifted to Actinobacteria in logged and plantation soil. Present findings also indicated that only FELF exhibited change in bacterial communities along the soil depth, moving from the organic to the organic-mineral layer. Both layers of BWOP plantation soils deviated from other forests' soil in β-diversity analysis. To our knowledge, this is the first report on transitions of bacterial community structures with different soil horizons in the tropical rainforest including Borneo, Sabah. Borneo tropical soils form a large reservoir for soil bacteria and future exploration is needed for fully understanding the diversity structure and their bacterial functional properties.
    Matched MeSH terms: Soil/chemistry
  8. McGuire KL, D'Angelo H, Brearley FQ, Gedallovich SM, Babar N, Yang N, et al.
    Microb Ecol, 2015 May;69(4):733-47.
    PMID: 25149283 DOI: 10.1007/s00248-014-0468-4
    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.
    Matched MeSH terms: Soil/chemistry
  9. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Antineoplastic Agents/chemistry; Chelating Agents/chemistry; Cobalt/chemistry*; DNA/chemistry; Organometallic Compounds/chemistry; Phenanthrolines/chemistry*; Pyrones/chemistry*
  10. Hussein MZ, Azmin WH, Mustafa M, Yahaya AH
    J Inorg Biochem, 2009 Aug;103(8):1145-50.
    PMID: 19577306 DOI: 10.1016/j.jinorgbio.2009.05.016
    Currently the development of green chemistry approach with the use of biomaterial-based activities of microbial cells in the synthesis of various nanostructures has attracted a great attention. In this study, we report on the use of bacterium, Bacillus cereus as a biotemplating agent for the formation of zinc oxide nanoparticles with raspberry- and plate-like structures through a simple thermal decomposition of zinc acetate by maintaining the original pH of the reaction mixtures. Possible mechanism on the formation of the nanostructures is proposed based on the surface chemistry and biochemistry processes involved organic-inorganic interactions between zinc oxide and the microbial cells.
    Matched MeSH terms: Zinc Oxide/chemistry
  11. Citartan M, Tang TH
    Talanta, 2019 Jul 01;199:556-566.
    PMID: 30952298 DOI: 10.1016/j.talanta.2019.02.066
    Aptamers are nucleic acid-based molecular recognition elements that are specific and have high binding affinity against their respective targets. On account of their target recognition capacity, aptamers are widely utilized in a number of applications including diagnostics. This review aims to highlight the recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Significant focus is given on the primary assay formats of aptamers such as fluorescence, electrochemical, surface plasmon resonance (SPR) and colorimetric assays. A potpourri of platforms such as paper-based device, lateral flow assay, portable electrodes, portable SPR and smart phones expedient for point-of-care (POC) diagnostics are discussed. Emphasis is also given on the technicalities and assay configurations associated with the sensors.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
  12. Yau MQ, Emtage AL, Chan NJY, Doughty SW, Loo JSE
    J Comput Aided Mol Des, 2019 05;33(5):487-496.
    PMID: 30989574 DOI: 10.1007/s10822-019-00201-3
    The recent expansion of GPCR crystal structures provides the opportunity to assess the performance of structure-based drug design methods for the GPCR superfamily. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)-based methods are commonly used for binding affinity prediction, as they provide an intermediate compromise of speed and accuracy between the empirical scoring functions used in docking and more robust free energy perturbation methods. In this study, we systematically assessed the performance of MM/PBSA in predicting experimental binding free energies using twenty Class A GPCR crystal structures and 934 known ligands. Correlations between predicted and experimental binding free energies varied significantly between individual targets, ranging from r = - 0.334 in the inactive-state CB1 cannabinoid receptor to r = 0.781 in the active-state CB1 cannabinoid receptor, while average correlation across all twenty targets was relatively poor (r = 0.183). MM/PBSA provided better predictions of binding free energies compared to docking scores in eight out of the twenty GPCR targets while performing worse for four targets. MM/PBSA binding affinity predictions calculated using a single, energy minimized structure provided comparable predictions to sampling from molecular dynamics simulations and may be more efficient when computational cost becomes restrictive. Additionally, we observed that restricting MM/PBSA calculations to ligands with a high degree of structural similarity to the crystal structure ligands improved performance in several cases. In conclusion, while MM/PBSA remains a valuable tool for GPCR structure-based drug design, its performance in predicting the binding free energies of GPCR ligands remains highly system-specific as demonstrated in a subset of twenty Class A GPCRs, and validation of MM/PBSA-based methods for each individual case is recommended before prospective use.
    Matched MeSH terms: Receptors, G-Protein-Coupled/chemistry*
  13. Nakao A, Tomita M, Wagai R, Tanaka R, Yanai J, Kosaki T
    J Environ Radioact, 2019 Aug;204:86-94.
    PMID: 30986719 DOI: 10.1016/j.jenvrad.2019.03.028
    Radiocesium (RCs) is selectively adsorbed on interlayer sites of weathered micaceous minerals, which can reduce the mobility of RCs in soil. Therefore, soils developed from mica-deficient materials (e.g. serpentine soils) may have a higher risk of soil-to-plant transfer of RCs. Soils were collected from three serpentine soil profiles; Udepts in Oeyama, Japan, and Udepts and Udox in Kinabalu, Malaysia. Soil was sampled every 3 cm from 0 to 30 cm depth and sieved to isolate soil particles of ≤20 μm diameter for the assessment of radiocesium interception potential (RIP) after a series of pretreatments. One subset was treated with H2O2 to remove organic matter (OM). Another subset was further treated with hot sodium citrate to remove hydroxy-Al polymers (Al(OH)x). RIPuntreated was <0.4 mol kg-1 whereas mica-K content was <0.02% by weight for ≤20-μm soil particles from Udepts and Udox in Kinabalu, Malaysia, values as low as those of non-micaceous minerals (e.g. kaolinite and smectite). Neither OM nor Al(OH)x removal resulted in a large increase in RIP value for these soils. These results clearly indicated that serpentine soils in Malaysia have very few RCs selective adsorption sites due to the absence of micaceous minerals. In contrast, soil from Udepts in Oeyama, Japan showed average RIPuntreated of 5.6 mol kg-1 and mica-K content of 0.72% by weight for the ≤20-μm particles. Furthermore, the RIP value was significantly increased to an average of 22.5 mol kg-1 after removing both OM and Al(OH)x. These results strongly suggest that weathered micaceous minerals primarily control the ability to retain RCs. These micaceous minerals cannot originate from serpentine minerals, and are probably incorporated as an exotic material, such as Asian dust. This hypothesis is supported by the δ18O value of quartz isolated from the ≤20-μm soil particles from Oeyama, Japan (+16.13‰±0.11‰), very similar to that of Asian dust. In conclusion, serpentine soils in Japan may exhibit a reduced risk of soil-to-plant transfer of RCs due to the historical deposition of Asian dust.
    Matched MeSH terms: Soil/chemistry*
  14. Yap PC, Ayuhan N, Woon JJ, Teh CSJ, Lee VS, Azman AS, et al.
    Molecules, 2021 Mar 19;26(6).
    PMID: 33808805 DOI: 10.3390/molecules26061727
    A total of 20 of isolates of lactic acid bacteria (LAB) were selected and screened for antagonistic activity against clinical strains of 30 clinical isolates of extremely drug-resistant (XDR) Acinetobacter baumannii using the well diffusion assay method. Results showed that 50% of the highly LAB strains possessed inhibitory activity against (up to 66%) of the XDR A. baumannii strains tested. The supernatant of the twenty LAB strains was subjected to gas chromatography mass spectrometry (GCMS) revealed that the common compound found in the active isolates against XDR A. baumannii was 3-Isobutyl-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, a known potential diketopiperazine group. The molecular docking study against potential antibacterial targets with selected ligands was performed to predict the binding mode of interactions, which is responsible for antibacterial activity. The docking analysis of the potent compounds supported the potential antibacterial activity exhibiting high inhibition constant and binding affinity in silico.
    Matched MeSH terms: Lactobacillales/chemistry*
  15. Alharthi AM, Lee MH, Algamal ZY, Al-Fakih AM
    SAR QSAR Environ Res, 2020 Aug;31(8):571-583.
    PMID: 32628042 DOI: 10.1080/1062936X.2020.1782467
    One of the most challenging issues when facing a Quantitative structure-activity relationship (QSAR) classification model is to deal with the descriptor selection. Penalized methods have been adapted and have gained popularity as a key for simultaneously performing descriptor selection and QSAR classification model estimation. However, penalized methods have drawbacks such as having biases and inconsistencies that make they lack the oracle properties. This paper proposes an adaptive penalized logistic regression (APLR) to overcome these drawbacks. This is done by employing a ratio (BWR) of the descriptors between-groups sum of squares (BSS) to the within-groups sum of squares (WSS) for each descriptor as a weight inside the L1-norm. The proposed method was applied to one dataset that consists of a diverse series of antimicrobial agents with their respective bioactivities against Candida albicans. By experimental study, it has been shown that the proposed method (APLR) was more efficient in the selection of descriptors and classification accuracy than the other competitive methods that could be used in developing QSAR classification models. Another dataset was also successfully experienced. Therefore, it can be concluded that the APLR method had significant impact on QSAR analysis and studies.
    Matched MeSH terms: Antifungal Agents/chemistry*
  16. Nath S, Prakash J, Prajapati VK, Sharma N, Pulikkotil SJ
    Indian J Dent Res, 2020 8 10;31(3):433-438.
    PMID: 32769279 DOI: 10.4103/ijdr.IJDR_783_17
    Introduction: Bidi, a leaf rolled cigarette, is the most popular form of smoking in India. Bidi cigarette contains higher tar, ammonia, and nicotine content than a conventional cigarette and is more hazardous.

    Aim of Study: The aim of this study was to determine the effect of bidi smoking on periodontitis by assessing the interleukin (IL)-1β and IL-8 from a gingival crevicular fluid (GCF).

    Materials and Methods: A total of 60 patients were selected, which included 40 patients diagnosed with chronic periodontitis (20 bidi smokers and 20 non-bidi smokers) and 20 periodontal healthy controls. Diseased and healthy sites were selected from each of the chronic periodontitis subjects. Clinical parameters assessed were plaque index (PI), gingival index (GI), periodontal probing depth (PPD), recession (RC), and clinical attachment level (CAL). Pooled GCF samples were taken from the same site and analyzed for IL-1β and IL-8 using enzyme-linked immunosorbent assay.

    Results: Bidi smokers displayed decreased levels of IL-1β and IL-8 than non-bidi smokers for both healthy and diseased sites and significantly reduced IL-8 levels among bidi smokers when compared to controls. Among bidi smokers, the diseased site had significantly higher levels of IL-8 than the healthy site. Non-smoker subjects with chronic periodontitis especially diseased sites contained significantly higher amounts of IL-1β and IL-8 than smokers and controls. The PI scores were highest among bidi smokers with reduced BOP and GI scores.

    Conclusions: Bidi smoking influenced the cytokine profile among periodontitis patients exhibiting decreased levels of IL-1β and IL-8.

    Matched MeSH terms: Gingival Crevicular Fluid/chemistry
  17. Fandi KG, Ghazali HM, Yazid AM, Raha AR
    Lett Appl Microbiol, 2001 Apr;32(4):235-9.
    PMID: 11298932
    AIMS: The key enzyme in the fructose-6-phosphate shunt in bifidobacteria, Fructose-6-phosphate phosphoketolase (F6PPK; E.C. 4.1.2.22.), was purified to electrophoretic homogeneity for the first time from Bifidobacterium longum (BB536).

    METHODS AND RESULTS: A three-step procedure comprising acetone fractionation followed by fast protein liquid chromatography (FPLC) resulted in a 30-fold purification. The purified enzyme had a molecular mass of 300 +/- 5 kDa as determined by gel filtration. It is probably a tetramer containing two different subunits with molecular masses of 93 +/- 1 kDa and 59 +/- 0.5 kDa, as determined by SDS-PAGE.

    CONCLUSION: The deduced N-terminal amino acid sequences of the two subunits revealed no significant similarity between them and other proteins when compared to the data bases of EMBL and SWISS-PROT, indicating that this could be the first report on N-terminal amino acid sequence of F6PPK.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The data from this study will be used to design oligonucleotide probe specific for bifidobacteria and to study the gene encoded F6PPK.

    Matched MeSH terms: Aldehyde-Lyases/chemistry
  18. Noh NA, Salleh SM, Yahya AR
    Lett Appl Microbiol, 2014 Jun;58(6):617-23.
    PMID: 24698293 DOI: 10.1111/lam.12236
    A fed-batch strategy was established based on the maximum substrate uptake rate (MSUR) of Pseudomonas aeruginosa USM-AR2 grown in diesel to produce rhamnolipid. This strategy matches the substrate feed rates with the substrate demand based on the real-time measurements of dissolved oxygen (DO). The MSUR was estimated by determining the time required for consumption of a known amount of diesel. The MSUR trend paralleled the biomass profile of Ps. aeruginosa USM-AR2, where the MSUR increased throughout the exponential phase indicating active substrate utilization and then decreased when cells entered stationary phase. Rhamnolipid yield on diesel was enhanced from 0·047 (g/g) in batch to 0·110 (g/g) in pulse-pause fed-batch and 0·123 (g/g) in MSUR fed-batch. Rhamnolipid yield on biomass was also improved from 0·421 (g/g) in batch, 3·098 (g/g) in pulse-pause fed-batch to 3·471 (g/g) using MSUR-based strategy. Volumetric productivity increased from 0·029 g l(-1) h(-1) in batch, 0·054 g l(-1) h(-1) in pulse-pause fed-batch to 0·076 g l(-1) h(-1) in MSUR fed-batch.
    Matched MeSH terms: Oxygen/chemistry
  19. Chaudhry AR, Irfan A, Muhammad S, Al-Sehemi AG, Ahmed R, Jingping Z
    J Mol Graph Model, 2017 08;75:355-364.
    PMID: 28651184 DOI: 10.1016/j.jmgm.2017.05.012
    In the present study, we use the state of art density functional theory (DFT) techniques to calculate the structural, optoelectronic and nonlinear optical (NLO) properties for two novel chalcone derivatives. The geometrical structures of chalcone derivatives compound 1 and 2 are optimized using periodic boundary conditions (PBC) in solid-state phase as well as isolated single molecular geometry in the gas phase. The reasonable agreement is found among experimental, solid-state and gas phase single molecular geometries, which provide us, further confidence to explore the potential of above-entitled derivatives as good functional materials for electro-optical applications. For instance, the frequency dependent real parts of dielectric functions are calculated for compound 1 and 2. The maximum value of real part of the dielectric function for compound 1 and 2 at 0eV are computed as 4.35 and 6.68 for the polarization vectors of (001) directions, respectively, which reveals the fact that the compound 1 and 2 might be good charge transport materials. The reflectivities of the compound 1 and 2 are 0.64 and 0.45 revealing that the compound 2 might be more efficient material for organic photovoltaic (OPV) applications. The results of the refractive index improved by doping the strong electron withdrawing groups (EWGs) shows that the compound 2 might be good refractor of the photon as compared to compound 1. The calculated values for static second-order polarizability are 3498 and 10464 a. u. and for frequency dependent second harmonic generations are 2557 and 6429 a. u. for compound 1 and 2, respectively, which indicates their significant potential for possible nonlinear optical applications.
    Matched MeSH terms: Chalcones/chemistry*
  20. Chong ZX, Ho WY, Yan P, Alshagga MA
    Asian Pac J Cancer Prev, 2020 Apr 01;21(4):881-895.
    PMID: 32334447 DOI: 10.31557/APJCP.2020.21.4.881
    BACKGROUND: Conducting systematic review to evaluate plant use as a risk factor to cancer could be challenging. A systematic and well-balanced method should be applied to accommodate in vivo and in vitro studies to make a final decision. In this article, khat, a recreational plant used in some Arabic and African regions, was employed as an example to systematically determine its relationships to the premalignant and cancerous conditions.

    METHODS: Systematic database search was performed to recruit original human, animal or in vitro studies on khat and cancer. Sixteen studies fulfilled the inclusion criteria and subjected to assessment using Risk of Bias (RoB). Office of Health and Translation (OHAT) approach was used to rate the confidence level in the body of evidence. The evidence was integrated to establish the relationships between khat, premalignant conditions and cancer.

    RESULTS: Seven out of eight studies showed that khat causes premalignant oral lesions with moderate evidence level. Four studies showed that khat causes cancer with low evidence level and another three studies showed that khat has anti-cancer effect with moderate to high evidence level. Only one study suggested that khat is unrelated to cancer.

    CONCLUSION: RoB and OHAT approach are reliable systematic tools to evaluate plant risk to cancer and provide objective and uniform summary regardless of the study type. In conclusion, our pooled analysis did not find a direct relationship between khat and cancer but anti-cancer effect would require to be proofed on human studies.

    Matched MeSH terms: Catha/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links