Displaying publications 521 - 540 of 895 in total

Abstract:
Sort:
  1. Alotaibi AM, Ismail AF, Aziman ES
    Sci Rep, 2023 Jun 08;13(1):9316.
    PMID: 37291241 DOI: 10.1038/s41598-023-36487-5
    This study investigated the efficacy of using phosphate-modified zeolite (PZ) as an adsorbent for removing thorium from aqueous solutions. The effects of various factors such as contact time, adsorbent mass, initial thorium concentration, and pH value of the solution on the removal efficiency were analyzed using the batch technique to obtain optimum adsorption condition. The results revealed that the optimal conditions for thorium adsorption were a contact time of 24 h, 0.03 g of PZ adsorbent, pH 3, and a temperature of 25 °C. Isotherm and kinetics parameters of the thorium adsorption on PZ were also determined, with equilibrium studies showing that the experimental data followed the Langmuir isotherm model. The maximum adsorption capacity (Qo) for thorium was found to be 17.3 mg/g with the Langmuir isotherm coefficient of 0.09 L/mg. Using phosphate anions to modify natural zeolite increased its adsorption capacity. Furthermore, adsorption kinetics studies demonstrated that the adsorption of thorium onto PZ adsorbent fitted well with the pseudo-second-order model. The applicability of the PZ adsorbent in removing thorium from real radioactive waste was also investigated, and nearly complete thorium removal was achieved (> 99%) from the leached solution obtained from cracking and leaching processes of rare earth industrial residue under optimized conditions. This study elucidates the potential of PZ adsorbent for efficient removal of thorium from rare earth residue via adsorption, leading to a reduction in waste volume for ultimate disposition.
    Matched MeSH terms: Adsorption
  2. Francis AO, Kevin OS, Ahmad Zaini MA
    Int J Phytoremediation, 2023;25(12):1625-1635.
    PMID: 36823750 DOI: 10.1080/15226514.2023.2179013
    This study evaluated the characteristics of zinc chloride modified vitex doniana seed activated carbon (VDZnCl2) for the removal of methylene blue. VDZnCl2 was characterized for textural properties, surface morphology and surface chemistry. Batch adsorption of methylene blue by VDZnCl2 was evaluated for the effects of concentration, contact time, adsorbent dosage, and solution pH. The surface area increased from 14 to 933 m2/g with porous texture to facilitate adsorption. The SEM micrograph showed varieties of pores with widened cavities. The FTIR spectra showed the characteristics of O-H and C=C groups commonly found in carbonaceous materials. The maximum methylene blue adsorption was recorded as 238 mg/g at concentration range of 1-800 mg/L and VDZnCl2 dosage of 50 mg. Sips isotherm fitted well with the equilibrium data, suggesting that the adsorption by VDZnCl2 was a physical process onto its heterogeneous surface, while the applicability of pseudo-first-order kinetics implies that external diffusion was the rate controlling mechanism. The performance put up by VDZnCl2 suggested that it is a potential adsorbent substitute for dye wastewater treatment.
    Matched MeSH terms: Adsorption
  3. Tran TV, Nguyen DTC, Le HTN, Bach LG, Vo DN, Lim KT, et al.
    Molecules, 2019 May 16;24(10).
    PMID: 31100932 DOI: 10.3390/molecules24101887
    In this study, a minimum-run resolution IV and central composite design have been developed to optimize tetracycline removal efficiency over mesoporous carbon derived from the metal-organic framework MIL-53 (Fe) as a self-sacrificial template. Firstly, minimum-run resolution IV, powered by the Design-Expert program, was used as an efficient and reliable screening study for investigating a set of seven factors, these were: tetracycline concentration (A: 5-15 mg/g), dose of mesoporous carbons (MPC) (B: 0.05-0.15 g/L), initial pH level (C: 2-10), contact time (D: 1-3 h), temperature (E: 20-40 °C), shaking speed (F: 150-250 rpm), and Na+ ionic strength (G: 10-90 mM) at both low (-1) and high (+1) levels, for investigation of the data ranges. The 20-trial model was analyzed and assessed by Analysis of Variance (ANOVA) data, and diagnostic plots (e.g., the Pareto chart, and half-normal and normal probability plots). Based on minimum-run resolution IV, three factors, including tetracycline concentration (A), dose of MPC (B), and initial pH (C), were selected to carry out the optimization study using a central composite design. The proposed quadratic model was found to be statistically significant at the 95% confidence level due to a low P-value (<0.05), high R2 (0.9078), and the AP ratio (11.4), along with an abundance of diagnostic plots (3D response surfaces, Cook's distance, Box-Cox, DFFITS, Leverage versus run, residuals versus runs, and actual versus predicted). Under response surface methodology-optimized conditions (e.g., tetracycline concentration of 1.9 mg/g, MPC dose of 0.15 g/L, and pH level of 3.9), the highest tetracycline removal efficiency via confirmation tests reached up to 98.0%-99.7%. Also, kinetic intraparticle diffusion and isotherm models were systematically studied to interpret how tetracycline molecules were absorbed on an MPC structure. In particular, the adsorption mechanisms including "electrostatic attraction" and "π-π interaction" were proposed.
    Matched MeSH terms: Adsorption
  4. Khalil M, Hanif MA, Rashid U, Ahmad J, Alsalme A, Tsubota T
    Environ Sci Pollut Res Int, 2023 Jul;30(34):81333-81351.
    PMID: 35710971 DOI: 10.1007/s11356-022-21367-8
    The hazardous dyes on mixing with water resources are affecting many life forms. Granite stone is popular worldwide for decorating floors, making other forms of decorative materials and items. Granite stone powder waste can be obtained free of cost from marble factories as factories spend on the disposal of this waste. In the present study, novel granite stone powder waste composite has been prepared and utilized for the effective removal of Terasil dye. Two types of granite including gray granite and white granite were used in pure, calcinized, and chemically modified forms. Freundlich adsorption isotherm model best explained the adsorption mechanism of dye removal using granite composites as compared to other adsorption isothermal models. Characterization techniques like scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used for the determination of morphological features and functional groups of granite composites. The obtained results were statistically analyzed using analysis of variance (ANOVA) along with the post hoc Tukey test. An extraordinarily high Terasil dye uptake capacity (more than 400 mg/g) was exhibited by granite composites prepared using sodium metasilicate. The synthesized novel nano-constructed composites provided a viable strategy as compared to the pure granite stone for dye removal from wastewater water.
    Matched MeSH terms: Adsorption
  5. Vijayasree VP, Abdul Manan NS
    Int J Biol Macromol, 2023 Jul 01;242(Pt 1):124723.
    PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723
    In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
    Matched MeSH terms: Adsorption
  6. Al-Asadi ST, Al-Qaim FF, Al-Saedi HFS, Deyab IF, Kamyab H, Chelliapan S
    Environ Monit Assess, 2023 May 16;195(6):676.
    PMID: 37188926 DOI: 10.1007/s10661-023-11334-2
    Fig leaf, an environmentally friendly byproduct of fruit plants, has been used for the first time to treat of methylene blue dye. The fig leaf-activated carbon (FLAC-3) was prepared successfully and used for the adsorption of methylene blue dye (MB). The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET). In the present study, initial concentrations, contact time, temperatures, pH solution, FLAC-3 dose, volume solution, and activation agent were investigated. However, the initial concentration of MB was investigated at different concentrations of 20, 40, 80, 120, and 200 mg/L. pH solution was examined at these values: pH3, pH7, pH8, and pH11. Moreover, adsorption temperatures of 20, 30, 40, and 50 °C were considered to investigate how the FLAC-3 works on MB dye removal. The adsorption capacity of FLAC-3 was determined to be 24.75 mg/g for 0.08 g and 41 mg/g for 0.02 g. The adsorption process has followed the Langmuir isotherm model (R2 = 0.9841), where the adsorption created a monolayer covering the surface of the adsorbent. Additionally, it was discovered that the maximum adsorption capacity (Qm) was 41.7 mg/g and the Langmuir affinity constant (KL) was 0.37 L/mg. The FLAC-3, as low-cost adsorbents for methylene blue dye, has shown good cationic dye adsorption performance.
    Matched MeSH terms: Adsorption
  7. Obayomi KS, Yon Lau S, Danquah MK, Zhang J, Chiong T, Meunier L, et al.
    Chemosphere, 2023 Oct;339:139742.
    PMID: 37562502 DOI: 10.1016/j.chemosphere.2023.139742
    A secure aquatic environment is essential for both aquatic and terrestrial life. However, rising populations and the industrial revolution have had a significant impact on the quality of the water environment. Despite the implementation of strong and adapted environmental policies for water treatment worldwide, the issue of organic dyes in wastewater remains challenging. Thus, this study aimed to develop an efficient, cost-effective, and sustainable material to treat methylene blue (MB) in an aqueous environment. In this research, maize extract solution (MES) was utilized as a green cross-linker to induce precipitation, conjugation, and enhance the adsorption performance of graphene oxide (GO) cross-linked with durian shell activated carbon (DSAC), resulting in the formation of a GO@DSAC composite. The composite was investigated for its adsorptive performance toward MB in aqueous media. The physicochemical characterization demonstrated that the cross-linking method significantly influenced the porous structure and surface chemistry of GO@DSAC. BET analysis revealed that the GO@DSAC exhibited dominant mesopores with a surface area of 803.67 m2/g. EDX and XPS measurements confirmed the successful cross-linking of GO with DSAC. The adsorption experiments were well described by the Harkin-Jura model and they followed pseudo-second order kinetics. The maximum adsorption capacity reached 666.67 mg/g at 318 K. Thermodynamic evaluation indicated a spontaneous, feasible, and endothermic in nature. Regenerability and reusability investigations demonstrated that the GO@DSAC composite could be reused for up to 10 desorption-adsorption cycles with a removal efficiency of 81.78%. The selective adsorptive performance of GO@DSAC was examined in a binary system containing Rhodamine B (RhB) and methylene orange (MO). The results showed a separation efficiency (α) of 98.89% for MB/MO and 93.66% for MB/RhB mixtures, underscoring outstanding separation capabilities of the GO@DSAC composite. Overall, the GO@DSAC composite displayed promising potential for the effective removal of cationic dyes from wastewater.
    Matched MeSH terms: Adsorption
  8. Arni LA, Hapiz A, Jawad AH, Abdulhameed AS, ALOthman ZA, Wilson LD
    Int J Biol Macromol, 2023 Sep 01;248:125943.
    PMID: 37482164 DOI: 10.1016/j.ijbiomac.2023.125943
    Herein, a novel nanohybrid composite of magnetic chitosan-salicylaldehyde/nanoclay (MCH-SAL/NCLA) was hydrothermally synthesized for removal of azo dye (acid red 88, AR88) from simulated wastewater. Response surface methodology combined with the Box-Behnken design (RSM-BBD) was applied with 29 experiments to assess the impact of adsorption variables, that include A: % NCLA loading (0-50), B: MCH-SAL/NCLA dose (0.02-0.1 g/100 mL), C: pH (4-10), and time D: (10-90 min) on AR88 dye adsorption. The highest AR88 removal (75.16 %) as per desirability function was attained at the optimum conditions (NCLA loading = 41.8 %, dosage = 0.06 g/100 mL, solution pH = 4, and time = 86. 17 min). The kinetic and equilibrium adsorption results of AR88 by MCH-SAL/NCLA reveal that the process follows the pseudo-first-order and Temkin models. The MCH-SAL/NCLA composite has a maximum adsorption capacity (173.5 mg/g) with the AR88 dye. The adsorption of AR88 onto the MCH-SAL/NCLA surface is determined by a variety of processes, including electrostatic, hydrogen bonding, n-π, and n-π interactions. This research revealed that MCH-SAL/NCLA can be used as a versatile and efficient bio-adsorbent for azo dye removal from contaminated wastewater.
    Matched MeSH terms: Adsorption
  9. Rahman ML, Fui CJ, Sarjadi MS, Arshad SE, Musta B, Abdullah MH, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(27):34541-34556.
    PMID: 32557073 DOI: 10.1007/s11356-020-09462-0
    A waste material known as palm oil empty fruit bunch (EFB) is used as a source of cellulose for the development of polymeric materials for the removal of metal ions from industrial wastewater. A poly(acrylonitrile)-grafted palm cellulose copolymer was synthesized by a conventional free radical initiating process followed by synthesis of a poly(amidoxime) ligand by oximation reaction. The resulting products were characterized by FT-IR, FE-SEM, EDX, TGA, DSC, and XPS. The poly(amidoxime) ligand was used to coordinate with and extract a series of transition metal ions from water samples. The binding capacity (qe) of the ligand with the metal ions such as copper, iron, cobalt, nickel, and lead were 260, 210, 168, 172, and 272 mg g-1, respectively at pH 6. The adsorption process followed the pseudo-first-order kinetic model (R2 > 0.99) and as well as the Freundlich isotherm model (R2 > 0.99) indicating the occurrence of a multi-layer adsorption process in the amidoxime ligand adsorbent. Results from reusability studies show that the ligand can be recycled for at least 10 cycles without any significant losses to its initial adsorption capacity. The synthesized polymeric ligand was shown to absorb heavy metals from electroplating wastewater with up to 95% efficiency.
    Matched MeSH terms: Adsorption
  10. Irshad MA, Sattar S, Al-Huqail AA, Alghanem SMS, Nawaz R, Ain NU, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(52):112575-112590.
    PMID: 37833594 DOI: 10.1007/s11356-023-30141-3
    Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.
    Matched MeSH terms: Adsorption
  11. Abdulhameed AS, Hapiz A, Musa SA, Kashi E, Wu R, ALOthman ZA, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128463.
    PMID: 38029908 DOI: 10.1016/j.ijbiomac.2023.128463
    In this study, a new biocomposite magnetic adsorbent (magnetic glyoxal-chitosan Schiff base/organically modified montmorillonite (MCTS-GOX/OMMT)) was synthesized and employed for the adsorption of reactive blue 19 dye (RB19) from aqueous environment. The physicochemical properties of the MCTS-GOX/OMMT were confirmed by using various characterization techniques such as BET, XRD, FTIR, SEM-EDX, VSM, and pHpzc. The adsorption key variables were statistically optimized via Box-Behnken design (BBD) And accordingly the best operational conditions to achieve maximum RB19 removal were recorded at MCTS-GOX/OMMT dosage = 0.1 g/0.1 L, solution pH = 4, and working temperature = 25 °C. The adsorption process for RB19 appeared to follow the pseudo-second-order kinetic and the Langmuir isotherm models, according to the findings of the adsorption kinetics and equilibrium investigations. The maximum adsorption capacity of the MCTS-GOX/OMMT towards RB19 was 122.3 mg/g, demonstrating its preferable adsorption capability. The successful development of this novel magnetic bioadsorbent with excellent adsorption ability towards organic dyes and efficient separation ability opens possibilities for its practical application in wastewater treatment and dye removal processes.
    Matched MeSH terms: Adsorption
  12. Abdulhameed AS, Wu R, Musa SA, Agha HM, ALOthman ZA, Jawad AH, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128267.
    PMID: 37992917 DOI: 10.1016/j.ijbiomac.2023.128267
    In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.
    Matched MeSH terms: Adsorption
  13. Naggar AH, Dhmees A, Seaf-Elnasr TA, Chong KF, Ali GAM, Ali HM, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):3872-3886.
    PMID: 38093080 DOI: 10.1007/s11356-023-31453-0
    The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents.
    Matched MeSH terms: Adsorption
  14. Choi D, Oh JI, Lee J, Park YK, Lam SS, Kwon EE
    Environ Int, 2019 11;132:105037.
    PMID: 31437646 DOI: 10.1016/j.envint.2019.105037
    In an effort to seek a new technical platform for disposal of drinking water treatment sludge (DWTS: alum sludge), pyrolysis of DWTS was mainly investigated in this study. To establish a more sustainable thermolytic platform for DWTS, this study particularly employed CO2 as reactive gas medium. Thus, this study laid great emphasis on elucidating the mechanistic roles of CO2 during the thermolysis of DWTS. A series of the TGA tests of DWTS in CO2 in reference to N2 revealed no occurrence of the heterogeneous reaction between CO2 and the sample surface of DWTS. As such, at the temperature regime before initiating the Boudouard reaction (i.e., ≥700 °C), the mass decay patterns of DWTS in N2 and CO2 were nearly identical. However, the gaseous effluents from lab-scale pyrolysis of DWTS in CO2 in reference to N2 were different. In sum, the homogeneous reactions between CO2 and volatile matters (VMs) evolved from the thermolysis of DWTS led to the enhanced generation of CO. Also, CO2 suppressed dehydrogenation of VMs. Such the genuine mechanistic roles of CO2 in the thermolysis of DWTS subsequently led to the compositional modifications of the chemical species in pyrolytic oil. Furthermore, the biochar composite was obtained as byproduct of pyrolysis of DWTS. Considering that the high content of Al2O3 and Fe-species in the biochar composite imparts a strong affinity for As(V), the practical use of the biochar composite as a sorptive material for arsenic (V) was evaluated at the fundamental levels. This work reported that adsorption of As(V) onto the biochar composite followed the pseudo-second order model and the Freundlich isotherm model.
    Matched MeSH terms: Adsorption
  15. Aziz HA, Othman N, Yusuff MS, Basri DR, Ashaari FA, Adlan MN, et al.
    Environ Int, 2001 May;26(5-6):395-9.
    PMID: 11392757
    This paper discusses heavy metal removal from wastewater by batch study and filtration technique through low-cost coarse media. Batch study has indicated that more than 90% copper (Cu) with concentration up to 50 mg/l could be removed from the solution with limestone quantity above 20 ml (equivalent to 56 g), which indicates the importance of limestone media in the removal process. This indicates that the removal of Cu is influenced by the media and not solely by the pH. Batch experiments using limestone and activated carbon indicate that both limestone and activated carbon had similar metal-removal efficiency (about 95%). Results of the laboratory-scale filtration technique using limestone particles indicated that above 90% removal of Cu was achieved at retention time of 2.31 h, surface-loading rate of 4.07 m3/m2 per day and Cu loading of 0.02 kg/m3 per day. Analyses of the limestone media after filtration indicated that adsorption and absorption processes were among the mechanisms involved in the removal processes. This study indicated that limestone can be used as an alternative to replace activated carbon.
    Matched MeSH terms: Adsorption
  16. Han F, Hessen AS, Amari A, Elboughdiri N, Zahmatkesh S
    Environ Res, 2024 Mar 15;245:117972.
    PMID: 38141913 DOI: 10.1016/j.envres.2023.117972
    Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
    Matched MeSH terms: Adsorption
  17. Hapiz A, Jawad AH, Wilson LD, ALOthman ZA, Abdulhameed AS, Algburi S
    Int J Phytoremediation, 2024;26(4):579-593.
    PMID: 37740456 DOI: 10.1080/15226514.2023.2256412
    In this study, bamboo waste (BW) was subjected to pyrolysis-assisted ZnCl2 activation to produce mesoporous activated carbon (BW-AC), which was then evaluated for its ability to remove cationic dyes, specifically methylene blue (MB) and crystal violet (CV), from aqueous environments. The properties of BW-AC were characterized using various techniques, including potentiometric-based point of zero charge (pHpzc), scanning electron microscopy with energy dispersive X-rays (SEM-EDX), X-ray diffraction (XRD), gas adsorption with Brunauer-Emmett-Teller (BET) analysis, infrared (IR) spectroscopy. To optimize the adsorption characteristics (BW-AC dosage, pH, and contact time) of PBW, a Box-Behnken design (BBD) was employed. The BW-AC dose of 0.05 g, solution pH of 10, and time of 8 min are identified as optimal operational conditions for achieving maximum CV (89.8%) and MB (96.3%) adsorption according to the BBD model. The dye removal kinetics for CV and MB are described by the pseudo-second-order model. The dye adsorption isotherms revealed that adsorption of CV and MB onto BW-AC follow the Freundlich model. The maximum dye adsorption capacities (qmax) of BW-AC for CV (530 mg/g) and MB (520 mg/g) are favorable, along with the thermodynamics of the adsorption process, which is characterized as endothermic and spontaneous. The adsorption mechanism of CV and MB dyes by BW-AC was attributed to multiple contributions: hydrogen bonding, electrostatic forces, π-π attraction, and pore filling. The findings of this study highlight the potential of BW-AC as an effective adsorbent in wastewater treatment applications, contributing to the overall goal of mitigating the environmental impact of cationic dyes and ensuring the quality of water resources.
    Matched MeSH terms: Adsorption
  18. Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, Wilson LD, et al.
    Int J Phytoremediation, 2024;26(4):459-471.
    PMID: 37583281 DOI: 10.1080/15226514.2023.2246596
    This work aims to apply the use of food-grade algae (FGA) composited with chitosan-benzaldehyde Schiff base biopolymer (CHA-BD) as a new adsorbent (CHA-BA/FGA) for methyl violet 2B (MV 2B) dye removal from aqueous solutions. The effect of three processing variables, including CHA-BA/FGA dosage (0.02-0.1 g/100 mL), pH solution (4-10), and contact duration (10-120 min) on the removal of MV 2B was investigated using the Box-Behnken design (BBD) model. Kinetic and equilibrium dye adsorption profiles reveal that the uptake of MV 2B dye by CHA-BA/FGA is described by the pseudo-second kinetics and the Langmuir models. The thermodynamics of the adsorption process (ΔG°, ΔH°, and ΔS°) reveal spontaneous and favorable adsorption parameters of MV 2B dye onto the CHA-BA/FGA biocomposite at ambient conditions. The CHA-BA/FGA exhibited the maximum ability to absorb MV 2B of 126.51 mg/g (operating conditions: CHA-BA/FGA dose = 0.09 g/100 mL, solution pH = 8.68, and temperature = 25 °C). Various interactions, including H-bonding, electrostatic forces, π-π stacking, and n-π stacking provide an account of the hypothesized mechanism of MV 2B adsorption onto the surface of CHA-BA/FGA. This research reveals that CHA-BA/FGA with its unique biocomposite structure and favorable adsorption properties can be used to remove harmful cationic dyes from wastewater.
    Matched MeSH terms: Adsorption
  19. Mohd Radhuwan SN, Abdulhameed AS, Jawad AH, ALOthman ZA, Wilson LD, Algburi S
    Int J Phytoremediation, 2024;26(5):699-709.
    PMID: 37740478 DOI: 10.1080/15226514.2023.2260004
    A major worldwide challenge that presents significant economic, environmental, and social concerns is the rising generation of food waste. The current work used chicken bones (CB) and rice (R) food waste as alternate precursors for the production of activated carbon (CBRAC) by microwave radiation-assisted ZnCl2 activation. The adsorption characteristics of CBRAC were investigated in depth by removing an organic dye (crystal violet, CV) from an aquatic environment. To establish ideal conditions from the significant adsorption factors (A: CBRAC dosage (0.02-0.12 g/100 mL); B: pH (4-10); and C: duration (30-420), a numerical desirability function of Box-Behnken design (BBD) was utilized. The highest CV decolorization by CBRAC was reported to be 90.06% when the following conditions were met: dose = 0.118 g/100 mL, pH = 9.0, and time = 408 min. Adsorption kinetics revealed that the pseudo-first order (PFO) model best matches the data, whereas the Langmuir model was characterized by equilibrium adsorption, where the adsorption capacity of CBRAC for CV dye was calculated to be 57.9 mg/g. CV adsorption is accomplished by several processes, including electrostatic forces, pore diffusion, π-π stacking, and H-bonding. This study demonstrates the use of CB and R as biomass precursors for the efficient creation of CBRAC and their use in wastewater treatment, resulting in a greener environment.
    Matched MeSH terms: Adsorption
  20. Jawad AH, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Algburi S
    Int J Phytoremediation, 2024;26(5):727-739.
    PMID: 37817463 DOI: 10.1080/15226514.2023.2262040
    In this study, the focus was on utilizing tropical plant biomass waste, specifically bamboo (BB), as a sustainable precursor for the production of activated carbon (BBAC) via pyrolysis-induced K2CO3 activation. The potential application of BBAC as an effective adsorbent for the removal of methylene blue (MB) dye from aqueous solutions was investigated. Response surface methodology (RSM) was employed to evaluate key adsorption characteristics, which included BBAC dosage (A: 0.02-0.08 g/L), pH (B: 4-10), and time (C: 2-8 min). The adsorption isotherm analysis revealed that the adsorption of MB followed the Freundlich model. Moreover, the kinetic data were well-described by the pseudo-second-order model, suggesting the role of a chemisorption process. The BBAC demonstrated a notable MB adsorption capacity of 195.8 mg/g, highlighting its effectiveness as an adsorbent. Multiple mechanisms were identified as controlling factors in MB adsorption by BBAC, including electrostatic forces, π-π stacking, and H-bonding interactions. The findings of this study indicate that BBAC derived from bamboo has the potential to be a promising adsorbent for the treatment of wastewater containing organic dyes. The employment of sustainable precursors like bamboo for activated carbon production contributes to environmentally friendly waste management practices and offers a solution for the remediation of dye-contaminated wastewater.
    Matched MeSH terms: Adsorption
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links