AREAS COVERED: Furanones, glycosylated chemicals, heavy metals, and nanomaterials are considered QS inhibitors (QSIs) and are therefore capable of inhibiting the microbial QS system. QSIs are currently being considered as antimicrobial therapeutic options. Currently, the low speed at which new antimicrobial agents are being developed impairs the treatment of drug-resistant infections. Therefore, QSIs are currently being studied as potential interventions targeting QS-signaling molecules and quorum quenching (QQ) enzymes to reduce microbial virulence.
EXPERT OPINION: QSIs represent a novel opportunity to combat antimicrobial resistance (AMR). However, no clinical trials have been conducted thus far assessing their efficacy. With the recent advancements in technology and the development of well-designed clinical trials aimed at targeting various components of the, QS system, these agents will undoubtedly provide a useful alternative to treat infectious diseases.
OBJECTIVES: Biofilms, which are made mostly of the matrix can be thought of as communities of microbes that are more virulent and more difficult to eradicate as compared to their planktonic counterparts. Currently, several formulations are available in the market which have the potential to treat biofilm-assisted skin disorders. However, the existing pharmacotherapies are not competent enough to cure them effectively and entirely, in several cases.
KEY FINDINGS: Especially with the rising resistance towards antibiotics, it has become particularly challenging to ameliorate these disorders completely. The new approaches are being used to combat biofilm-associated skin disorders, some of them being photodynamic therapy, nanotherapies, and the use of novel drug delivery systems. The focus of attention, however, is nanotherapy. Micelles, solid lipid nanoparticles, quatsomes, and many others are being considered to find a better solution for the biofilm-associated skin disorders.
SIGNIFICANCE: This review is an attempt to give a perspective on these new approaches for treating bacterial biofilms associated with skin disorders.
METHODS: We investigated the ocular permeation of topical tazocin after single drop application in normal rabbit eyes by estimating piperacillin and tazobactam concentrations in cornea, aqueous, and vitreous using a validated LC-MS/MS method. Furthermore, we determined the efficacy of repeated dose administration of tazocin against experimentally induced P. aeruginosa keratitis in rabbits in comparison to moxifloxacin. To determine the efficacy, clinical examination, histopathological examination, and estimation of bacterial load and inflammatory cytokines in cornea were done.
RESULTS: Significant corneal concentration of piperacillin and tazobactam was detected in normal rabbit corneas after single dose treatment with tazocin. In rabbits with Pseudomonas-induced keratitis, topical tazocin caused significant clinical and histopathological improvement. This improvement was associated with reduction in corneal bacterial load and inflammatory cytokines. Compared to moxifloxacin 0.5%, tazocin treated group showed greater clinical response which was associated with higher interleukin (IL)-1β, lower tumor necrosis factor (TNF)-α, a comparable level of IL-8, greater reduction in corneal bacterial load, and lesser inflammatory cell infiltration.
CONCLUSION: Tazocin showed good ocular penetration and was effective in treatment of Pseudomonas induced keratitis in rabbits.
Methods: The matrix patches were prepared by using different polymers, with and without silicone adhesive, dibutyl sebacate and mupirocin. The patches were characterized for mechanical properties, drug content, moisture content, water absorption capacity and Fourier transform infrared spectrum. In vitro release studies were performed by using Franz diffusion cell. In vitro disk diffusion assay was performed on the Mueller-Hinton Agar plate to measure the zone of inhibition of the patches. The in vivo study was performed on four groups of rats with bacterial counts at three different time intervals, along with skin irritancy and histopathologic studies.
Results: The patches showed appropriate average thickness (0.63-1.12 mm), tensile strength (5.08-10.08 MPa) and modulus of elasticity (21.53-42.19 MPa). The drug content ranged from 94.5% to 97.4%, while the moisture content and water absorption capacities at two relative humidities (75% and 93%) were in the range of 1.082-3.139 and 1.287-4.148 wt%, respectively. Fourier transform infrared spectra showed that there were no significant interactions between the polymer and the drug. The highest percentage of drug release at 8 hours was 47.94%. The highest zone of inhibition obtained was 28.3 mm against S. aureus. The in vivo studies showed that the bacterial colonies were fewer at 1 cm (7×101 CFU/mL) than at 2 cm (1.3×102 CFU/mL) over a 24-hour period. The patches were nonirritant to the skin, and histopathologic results also showed no toxic or damaging effects to the skin.
Conclusion: The in vitro and in vivo studies indicated that controlled release patches reduced the migration of S. aureus on the live rat skin effectively, however, a longer duration of study is required to determine the effectiveness of the patch on a suitable peritonitis-induced animal model.
METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR.
RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-β-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1.
INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.
MATERIALS AND METHODS: Physicians who managed H. pylori eradication in daily practice across 10 Southeast Asian countries were invited to participate in an online questionnaire, which included questions about the local availability of antimicrobial susceptibility tests (ASTs) and their preferred eradication regimens in real-world practice. An empiric regimen was considered inappropriate if it did not follow the local guidelines/consensus, particularly if it contained antibiotics with a high reported resistance rate or was recommended not to be empirically used worldwide.
RESULTS: There were 564 valid responses, including 314 (55.7%) from gastroenterologists (GIs) and 250 (44.3%) from non-GI physicians. ASTs were unavailable in 41.7%. In countries with low and intermediate clarithromycin resistance, the most common first-line regimen was PAC (proton pump inhibitor [PPI], amoxicillin, clarithromycin) (72.7% and 73.2%, respectively). Regarding second-line therapy, the most common regimen was bismuth-based quadruple therapy, PBMT (PPI, bismuth, metronidazole, tetracycline) (50.0% and 59.8%, respectively), if other regimens were used as first-line treatment. Concomitant therapy (PPI, amoxicillin, clarithromycin, metronidazole) (30.5% and 25.9%, respectively) and PAL (PPI, amoxicillin, levofloxacin) (22.7% and 27.7%, respectively) were favored if PBMT had been used as first-line treatment. In countries with high clarithromycin resistance, the most common first-line regimen was PBMT, but the utilization rate was only 57.7%. Alarmingly, PAC was prescribed in 27.8% of patients, ranking as the second most common regimen, and its prescription rate was higher in non-GI physicians than GI physicians (40.1% vs. 16.2%, p
RESULTS: It was seen from the results of the study that the first-choice antibiotics for 67.8% of dentists were found to be the β-lactam group while sulfonamides and tetracyclines at 20% were the second most prescribed group. Another important finding was that 45.6% of dentists ignored hypersensitivity testing before prescription of antibiotics even though 83.3% of the total dentists interviewed were aware of the increase in antibiotic resistance.
CONCLUSION: In conclusion, the dentists are partially aware of the guidelines but need further training and education on antimicrobial prescription that enables evidence-based decision-making for better practices and outcomes.