Displaying publications 521 - 540 of 1298 in total

Abstract:
Sort:
  1. Norul Azlin, M.Z., Senin, H.B., Kok Sheng, C.
    MyJurnal
    Phenolic resin-silica nanocomposites samples in pellet shape have been successfully prepared by intercalation of polymer solution through the hot pressing method. The phenolic resin is modified with organic elastomers of silica nanoparticles, which is about 20 nanometer in diameter. The change of density and porosity was studied based on the addition of silica content in the phenolic resin composites. The densities of composites increased with the addition of the silica content from 10 wt.% to 40 wt.%. On the other hand, the porosity percentage was decreased with increasing of silica contents. The mechanical properties (Young’s modulus, energy to break and time to failure) of the nanocomposites samples were identified using the Universal Testing Material Machine (UTM). The results of Young’s modulus, energy to break and time to failure of the phenolic resin composites were found to be slightly increased with silica content from 10 wt.% to 30 wt.%. The X-Ray Microtomogaphy (XRM) topographies have shown that the porosity exists on fracture structure for each nanocomposite. The nanocomposites surface structure has been analyzed using Scanning Electron Microscope (SEM). The observation shows that the fracture surface of the pure phenolic resin is relatively smooth and glassy, which is typical for a brittle material, but the phenolic resin- silica composites fracture surface is not smooth at all. The observations indicate the pure phenolic resin is brittle than phenolic resin-silica nanocomposites. Consequently, the physical properties of the phenolic resin-silica nanocomposites were improved with the addition of 10 wt.% to 30 wt.% silica contents, as compared to that of the pure phenolic resin.
    Matched MeSH terms: Microscopy, Electron, Scanning
  2. Sri Asliza, M.A., Zaheruddin, K., Shahrizal, H.
    MyJurnal
    In this study, natural Hydroxyapatite (HA) was extracted from clean cow bone by treatment with NaOH and heating at high temperature before ground into fine powder. The HA powder were than mixed together with binder for several hours. Dense HA were formed in die steel mould by using uniaxially pressing method. Sample was sintered at different temperature 1150, 1200, 1250 and 1300°C for several hours. The phases of specimen were identified using X-ray diffraction (XRD). The mechanical properties were analyzed using three-point bending testing and the microstructure was observed by scanning electron microscopy. From XRD results, natural HA shows phase of pure HA up to 1250 o C and fracture strength results indicated that the mechanical properties of specimen increase as temperature increase. From microstructure observation using SEM, HA specimen shows initial stages of sintering process at temperature 1150°C and show changes in microstructure evolution as temperature increase up to 1300°C.
    Matched MeSH terms: Microscopy, Electron, Scanning
  3. Farah Anis Jasni, Kuan, Yew Cheong, Lockman, Zainovia, Zainuriah Hassan
    MyJurnal
    Thin films of cerium oxide (CeO2) were prepared on silicon (Si) substrate by metal organic decomposition route. 0.25 M of cerium (III) acetylacetonate (acac) was used as starting materials with the addition of methanol and acetic acid as solvents. Oxide conversion of the film by thermal treatment was conducted at temperature ranging from 400 o C to 1000 o C for 15 min in argon ambient. X-ray diffraction (XRD) analysis utilizing Cukα radiation (Model Brukker’s Diffrac Plus ), Filmetrics system measurement, field emission scanning electron microscope (FE-SEM) (Model Zeiss Supra 35VP FE-SEM) and atomic force microscopy (AFM) (Model SII Nanonavi) were employed to characterize the phase formed and morphologies of the film produced.
    Matched MeSH terms: Microscopy, Electron, Scanning
  4. Affendi, A.F., Hasmaliza, M., Srimala, S.
    MyJurnal
    In these studies, cordierite was mechanically synthesized after a sol-gel process. The effect of milling time of cordierite was investigated. Aluminium nitrate nonahydrate, magnesium nitrate hexahydrate and tetraethylorthosilicate (TEOS) were used as starting materials. Gels obtained were mechanically activated in planetary ball mill by at 300rpm grinding speed and grinding time (15min, 30min, 45min and 60min). Powders produced were characterized by X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). XRD analysis proved that α-cordierite was formed at lower temperature (1200°C) as compliment to without grinding, whereby it is formed at1300°C. FESEM analysis shows the size of the cordierite were in submicron scale. EDX analysis proved that magnesium, aluminium, silicon and oxygen are elements existed in cordierite.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Habiba U, Afifi AM, Salleh A, Ang BC
    J Hazard Mater, 2017 Jan 15;322(Pt A):182-194.
    PMID: 27436300 DOI: 10.1016/j.jhazmat.2016.06.028
    In this study, chitosan/polyvinyl alcohol (PVA)/zeolite nanofibrous composite membrane was fabricated via electrospinning. First, crude chitosan was hydrolyzed with NaOH for 24h. Afterward, hydrolyzed chitosan solution was blended with aqueous PVA solution in different weight ratios. Morphological analysis of chitosan/PVA electrospun nanofiber showed a defect-free nanofiber material with 50:50 weight ratio of chitosan/PVA. Subsequently, 1wt.% of zeolite was added to this blended solution of 50:50 chitosan/PVA. The resulting nanofiber was characterized with field emission scanning electron microscopy, X-Ray diffraction, Fourier transform infrared spectroscopy, swelling test, and adsorption test. Fine, bead-free nanofiber with homogeneous nanofiber was electrospun. The resulting membrane was stable in distilled water, acidic, and basic media in 20 days. Moreover, the adsorption ability of nanofibrous membrane was studied over Cr (VI), Fe (III), and Ni (II) ions using Langmuir isotherm. Kinetic parameters were estimated using the Lagergren first-order, pseudo-second-order, and intraparticle diffusion kinetic models. Kinetic study showed that adsorption rate was high. However, the resulting nanofiber membrane showed less adsorption capacity at high concentration. The adsorption capacity of nanofiber was unaltered after five recycling runs, which indicated the reusability of chitosan/PVA/zeolite nanofibrous membrane. Therefore, chitosan/PVA/zeolite nanofiber can be a useful material for water treatment at moderate concentration of heavy metals.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Shah Rizal Kasim, Yeong, Meng Yee, Hazizan Md. Akil, Zainal Arifin Ahmad, Hazman Seli
    MyJurnal
    Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Santiagoo, Ragunathan, Hanafi Ismail, Kamarudin Hussin
    MyJurnal
    The effect of polypropylene maleic anhydride (PPMAH) on tensile properties and morphology of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/ rice husk powder (RHP) composites has been studied. The composites were prepared through melt mixing at 180ºC for 9 minutes using 50 rpm rotor speed. The specimens were analyzed using different techniques, namely tensile test and Scanning Electron Microscopy (SEM). The results obtained showed that the tensile strength and Young’s modulus of the modified composites were increased, while the elongation at break showed the opposite trend as compared with the unmodified composites. The morphology results support the tensile properties and these indicated a better interaction between the filler and matrix with the presence of PPMAH as a compatibilizer.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Hashida, N.H., Abdullah, R.B.
    ASM Science Journal, 2008;2(1):65-73.
    MyJurnal
    This study was carried out to compare the ultrastructure of fresh, capacitated and acrosome-reacted sperm. The sperm was treated with heparin for capacitation and calcium ionophore for acrosome reaction induction. Sperm samples were then prepared for ultrastructural studies and examined by transmission electron microscopy (TEM). Ultrastructural changes in plasma and acrosomal membranes, shape of the mitochondria and outer dense fibres, in capacitated and acrosome-reacted sperm were evident. The plasma membrane of fresh sperm was loosely fitted around the sperm head and the acrosomal membrane was closely opposed to the nucleus. The plasma and acrosomal membranes of the capacitated sperm were expanded, but disintegrated in the acrosome-reacted sperm. Mitochondria of fresh sperm appeared to be rounded in shape with plasma membrane closely opposed to it and the nine outer dense fibres were almost regular rounded in shape. However, in both capacitated and acrosome-reacted sperm, the mitochondria were almost regular and elongated in shape whilst the outer dense fibres were irregular in shape in the capacitated and acrosome-reacted sperm. There were no noticeable morphological changes found in the axonemal complexes in fresh, capacitated and acrosome-reacted sperm. Ultrastructural studies are able to provide detailed information on sequential events involving numerous physiological changes during fertilization.
    Matched MeSH terms: Microscopy, Electron, Transmission
  9. Madihah Ahmad, Bohari M. Yamin, Azwan Mat Lazim
    MyJurnal
    α-Mangostin was extracted from the pericarp of the Malaysian local Garcinia mangostana linn., The structure was characterised by Infrared red, UV-Visible and Nuclear Magnetic Resonance spectroscopic data. The fluorescence peak at 500nm in ethanol was not observed in PNIPAM microgel solution. The increase of colloidal size of the gel in the presence of α-mangostin was studied by Dynamic Light Scattering and Transmission Electron Microscope. The size of the particle also increases with increasing temperature up to 45⁰C after which it began to shrink. The TEM micrograph at 45°C showed a uniformly structured pattern of the gel occurs in the range of the lowest solution critical temperature.
    Matched MeSH terms: Microscopy, Electron, Transmission
  10. Aldoghachi MA, Azirun MS, Yusoff I, Ashraf MA
    Saudi J Biol Sci, 2016 Sep;23(5):634-41.
    PMID: 27579014 DOI: 10.1016/j.sjbs.2015.08.004
    Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Murugaiah C, Noor NZ, Mustafa S, Manickam R, Pattabhiraman L
    Microb Pathog, 2017 Apr;105:25-29.
    PMID: 28179117 DOI: 10.1016/j.micpath.2017.02.002
    Cholera, a severe form of gastroenteritis, is one of the most widespread diseases in developing countries. The mechanism of intestinal infection caused by V. cholerae O139 remains unclear. In order to explore some morphological aspects of its infection in the intestine including Peyer's patches, we investigated the V. cholerae O139 infection at intestinal site of the rabbit gut-loop model. The electron microscopic analysis revealed denuded mucosal surface with loss of microvilli and integrity of the surface epithelium. Infection of the intestine with V. cholerae O139 induces destruction of villi, microvilli and lining epithelium with exposure of crypts of Lieberkuhn.
    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Rajeev V, Arunachalam R, Nayar S, Arunima PR, Ganapathy S, Vedam V
    Eur J Dent, 2017 4 25;11(1):58-63.
    PMID: 28435367 DOI: 10.4103/ejd.ejd_113_16
    OBJECTIVE: This in vitro study was designed to assess shear bond strength (SBS) of ormocer flowable (OF) resin as a luting agent, ormocer as an indirect veneer material with portrayal of modes of failures using scanning electron microscope (SEM).

    MATERIALS AND METHODS: Sixty maxillary central incisors were divided into Group I, II, and III with 20 samples each based on luting cement used. They were OF, self-adhesive (SA) cement, and total etch (TE) cement. These groups were subdivided into "a" and "b" of ten each based on the type of veneering materials used. Veneer discs were fabricated using Ormocer restorative (O) and pressable ceramic (C). Specimens were thermocycled and loaded under universal testing machine for SBS. The statistical analysis was done using one-way ANOVA post hoc Tukey honest significant difference method.

    RESULTS: A significant difference was observed between the Groups I and II (P < 0.05). The highest mean bond strength when using ormocer veneer was obtained with the Group Ia (19.11 ± 1.92 Mpa) and lowest by Group IIa (8.1 ± 1.04 Mpa), whereas the highest mean bond strength while using ceramic veneer was of similar range for Group Ib (18.04 ± 4.08 Mpa) and Group IIIb (18.07 ± 1.40 Mpa). SEM analysis revealed OF and TE presented mixed type of failure when compared with SA where failure mode was totally adhesive.

    CONCLUSION: OF was found equally efficient like TE. Bond strength of ormocer as a veneer was not inferior to ceramic making it one of the promising additions in the field of dentistry.

    Matched MeSH terms: Microscopy, Electron, Scanning
  13. Hia IL, Pasbakhsh P, Chan ES, Chai SP
    Sci Rep, 2016 10 03;6:34674.
    PMID: 27694922 DOI: 10.1038/srep34674
    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.
    Matched MeSH terms: Microscopy, Electron, Scanning
  14. Xing S, Song Y, Liang JB, Faseleh Jahromi M, Shokryazda P, Mi J, et al.
    Ecotoxicol Environ Saf, 2017 May;139:78-82.
    PMID: 28113114 DOI: 10.1016/j.ecoenv.2017.01.016
    In vitro Lead (Pb(2+)) binding capacity of two probiotic bacteria strains, namely Bifidobacterium longumBB79 and Lactobacillus pentosusITA23, was assessed following incubation with the intestinal contents (IC) of laying hens. Results of this study demonstrated that IC treatment significantly enhanced (P<0.01) Pb(2+) binding capacity of both bacterial strains. Fourier transform infrared analysis indicated that several functional groups (O-H or N-H, C-H, C˭O, C-O, and C-O-C) on the bacteria cell wall involved in metal ion binding were altered after IC incubation, and new groups appeared between the 3700cm(-1) and 4000cm(-1)bands. Transmission electron microscopy demonstrated that after incubation with IC, unidentified IC components created new binding sites on the bacterial cell surface. These particles also changed the mechanism of Pb(2+) binding of the two strains from intracellular accumulation to extracellular adsorption.
    Matched MeSH terms: Microscopy, Electron, Transmission
  15. Teh, G.B., Wong, Y.C., Tilley, R.D.
    ASM Science Journal, 2014;8(1):21-28.
    MyJurnal
    Co(II)-Ti(IV)-substituted magnetoplumbite-type (M-type) barium ferrite nanoparticles were synthesized via the sol-gel technique employing ethylene glycol as the gel precursor. Structural and magnetic properties were characterised via X-ray diffraction (XRD), high resolution transmission electron microscopy and superconducting quantum interference device magnetometry. The particle sizes of the M-type BaCoXTiXFe12-2XO19 (0.2 ≤  ≤ 1.0) were found to be 900 Å – 1500 Å. The XRD results confirmed that the Co(II)-Ti(IV) substituted ferrites in the range of 0.2 ≤  ≤ 1.0 substitution had the M-type ferrite as the dominant phase. The hysteresis loss per-cycle decreased with increasing Co(II)-Ti(IV) substitution in M-type ferrites which showed reduced values in coercivity and remnant magnetisation with moderate effect on the saturation magnetisation.
    Matched MeSH terms: Microscopy, Electron, Transmission
  16. Sreekantan, Srimala, Ahmad Fauzi Mohd Noor, Zainal Arifin Ahmad, Radzali Othman, West, Anthony, Sinclair, Derek
    MyJurnal
    Barium strontium titanate (Ba0.7Sr0.3TiO3) powder was processed at temperature 80 o C by reacting titania sol in aqueous solutions that contained BaCl2, SrCl2 and NaOH at atmospheric pressure.
    The structural characteristic of the powder and sintered pellet were studied using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) whereas the electrical characteristic was determined via Impedance Spectroscopy (IS) and LCR meter. The synthesized powder was found to have a tetragonal phase after heating at 1300 o C. XRD pattern also showed the presence of secondary phase BaTi2O5 (BT2). The SEM results shows the fine grain size was in the range of 0.2 Pm to 0.4 Pm whereas the large ones are approximately 0.8 Pm to 1.2 Pm The ac response of sample sintered at 1300 o C indicated that three electrically different regions. Element 1 can be assigned as a ferroelectric grain boundary region and it is actually BT2, element 2 as a ferroelectric bulk region and the third element is a conductive core which has a low resistance (200 :) and capacitance value.
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Tabet, Tamer A., Fauziah Abdul Aziz, Shahidan Radiman
    MyJurnal
    Small-angle X-ray scattering (SAXS) was used to investigate the nanostructure of the microfibrils of cell wall in Acacia Mangium wood. Parameters, such as the fibre length (L), surface area of the single fibre (S), the correspondence distance from the center of the fibre to the center of its neighbor and the shape of the fibre were determined as a function to the distance from pith towards the bark. The results indicate that the fibre length ranged from 53.44 nm to 13.72 nm from pith to bark. Surface area of the single fibre varied from 0.65 nm 2 to 4.36 nm 2 , the highest being found at the end of bark region. The mean value of the correspondence distance is 13.95 nm. Surface structure analysis from scattering graph showed a rod shape of fibre in the pith region of Acacia Mangium wood. The use of SAXS technique and scanning electron microscope (SEM) micrographs gives the most reliable dimensions values.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Ahmad, M.B., Hashim, K.B., Mohd Yazid, N., Zainuddin, N.
    MyJurnal
    In this work, hydrogels were prepared from carboxymethyl cellulose (CMC) and 1-vinyl-2-pyrrolidone(VP) by Electron Beam irradiation in the presence of N,N'-methylenebisacrylamide (BIS) as a crosslinkingagent. The parameters studied include stirring time and percentage of crosslinking agent. Hydrogels werecharacterized using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy(SEM). VP and BIS were found be effective as reinforcement materials to improve the properties ofCMC. Meanwhile, the optimum conditions were 5% BIS and 3 hours of stirring time. The gel fractionincreased when irradiation dose was increased. FTIR confirmed the crosslinking reaction between CMCand VP after the irradiation process by using BIS as the crosslinking agent. TGA thermograms showedchanges in the thermal properties of CMC-VP hydrogels in the presence of different amounts of BIS.
    Matched MeSH terms: Microscopy, Electron, Scanning
  19. Marzuki, A.F., Masudi, S.M.
    MyJurnal
    Dentin morphology and the lesion found in dental caries have been studied for many years. It was first observed under optical microscopy, and later using electron microscopy. Confocal laser scanning microscopy (CLSM) applied with several fluorescent dyes such as alizarin red to see normal dentinal tubules. However, as far as authors aware, the CLSM studies of dentinal tubules in human caries using alizarin red is rare. The aim of this study is to examine histopathological and morphological changes in dentinal tubules of dentin caries stained with alizarin red using CLSM. Fifteen extracted carious teeth (premolar or molar) was collected and fixed in neutral formalin solution buffered with phosphate buffer, rinsed and stored in calcium free phosphate buffer saline (PBS) at 4°C. The specimens were dehydrated and embedded in resin. Longitudinal or cross sections were cut and polished and then stained with alizarin red S (100 μg/ml) in 0.5 M HCl solution for 24-48 hour at 37°C. After dehydration specimens were mounted on glass slide and examined under CLSM using epi-flourescent mode or transmission light mode with wave length of 512 nm. The images of dentinal tubules were taken serially and optimum images of three-dimensional structures were reconstructed using software of CLSM. Histopathological changes of dentinal tubules in human caries showed area of demineralized dentin, translucent zone, and normal area. The dentinal tubules were thin and had numerous branches. In conclusion, confocal microscopy revealed Study shows that confocal microscopy revealed histopathological changes in dentinal tubules affected by carious lesions.
    Matched MeSH terms: Microscopy, Electron
  20. Abdul Aziz, A., Abu Kasim, N.H., Ramasindarum, C., Mohamad Yusof, M.Y.P., Paiizi, M., Ahmad, R.
    Ann Dent, 2011;18(1):1-7.
    MyJurnal
    The aim of this study was to assess the wear of tungsten carbide burs and round rotary diamond instruments through measurements of rake angle and visual observations respectively under a field emission scanning electron microscope. Sixty short and long head pear-shaped tungsten carbide burs and 18 round rotary diamond instruments that had been used to complete < 5, > 5 and > 10 cavity preparations (n=10/group) were selected from the 3rd and 4th year dental students, Faculty of Dentistry, University of Malaya. There were two control groups consisting of long and short tungsten carbide burs of ten each. Two-way ANOVA was used to analyse the rake angle data. The data from the two control groups were collectively analysed following multiple paired t-test (p>.05) which showed no significant difference between the two types of tungsten carbide bur (short and long head). The mean rake angle of the control group was significantly higher (p < .05) compared to the < 5, > 5 and > 10 cavity preparation groups. The rake angle of the > 10 cavity preparation group was significantly lower than the other two test groups (p < .05). Round rotary diamond instruments in the < 5 cavity preparation group showed intact diamond particles with distinct cutting facets comparable to the control group. However, diamonds instruments in the > 5 and > 10 cavity preparation groups showed blunt diamond particles. In conclusion, wear of tungsten carbide burs and round rotary diamond instruments were evident after repeated use. Wear was more pronounced when instruments were used to prepare more than ten cavities.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links