Displaying publications 41 - 60 of 196 in total

Abstract:
Sort:
  1. Ho SK, Tan CP, Thoo YY, Abas F, Ho CW
    Molecules, 2014 Aug 19;19(8):12640-59.
    PMID: 25153876 DOI: 10.3390/molecules190812640
    Ultrasound-assisted extraction (UAE) with ethanol was used to extract the compounds responsible for the antioxidant activities of Misai Kucing (Orthosiphon stamineus). Response surface methodology (RSM) was used to optimize four independent variables: ethanol concentration (%), amplitude (%), duty cycle (W/s) and extraction time (min). Antioxidant compounds were determined by total phenolic content and total flavonoid content to be 1.4 g gallic acid equivalent/100 g DW and 45 g catechin equivalent/100 g DW, respectively. Antioxidant activities were evaluated using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical scavenging capacity assay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging capacity assay to be 1,961.3 and 2,423.3 µmol Trolox Equivalent Antioxidant Capacity (TEAC)/100 g DW, respectively. Based on the optimal conditions, experimental values were reported to be close to the predicted value by RSM modeling (p>0.05), indicating the suitability of UAE for extracting the antioxidants of Misai Kucing. Rosmarinic acid, kaempferol-rutinoside and sinesetine were identified by high performance liquid chromatography-mass spectrometry.
  2. Ng SP, Lai OM, Abas F, Lim HK, Tan CP
    Food Res Int, 2014 Oct;64:919-930.
    PMID: 30011735 DOI: 10.1016/j.foodres.2014.08.045
    The rheological properties, microstructure, textural properties, colour and droplet size distribution of mayonnaise-like emulsion models prepared using 10-30wt.% of palm olein-based diacylglycerol (POL-DAG) oil were compared with those of the control (100wt.% VCO) model. There were significant (P<0.05) differences in the particle size distribution of the oil droplets, the textural properties, and the rheological properties of the various emulsion models. The rheological analysis included the determination of the flow curves, yield stress, thixotropy, apparent viscosity, and viscoelastic parameters. The concentrated oil-in-water (O/W) emulsion with 30wt.% POL-DAG substitution exhibited high thixotropy. The POL-DAG content had a substantial effect on the rheological properties of yield stress, storage modulus (G') and loss modulus (G″). The pseudoplastic behaviour of the emulsions was demonstrated. The size of the particles in the 30% POL-DAG-substituted emulsion was dramatically increased after one day and 30days of storage. All of the emulsion samples with POL-DAG substituted for VCO showed a relatively non-uniform bimodal droplet size distribution after one day of storage. In general, substitution of 10-20wt.% POL-DAG oil is appropriate for preparing O/W emulsions that had flow curves and textural properties similar to those of the control sample.
  3. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
  4. Ng CH, Rullah K, Aluwi MF, Abas F, Lam KW, Ismail IS, et al.
    Molecules, 2014;19(8):11645-59.
    PMID: 25100256 DOI: 10.3390/molecules190811645
    The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, such as linoleic acid to form hydroperoxides. The search for selective LOX inhibitors may provide new therapeutic approach for inflammatory diseases. Herein, we report the synthesis of tHGA analogs using simple Friedel-Craft acylation and alkylation reactions with the aim of obtaining a better insight into the structure-activity relationships of the compounds. All the synthesized analogs showed potent soybean 15-LOX inhibitory activity in a dose-dependent manner (IC50 = 10.31-27.61 μM) where compound 3e was two-fold more active than tHGA. Molecular docking was then applied to reveal the important binding interactions of compound 3e in soybean 15-LOX binding site. The findings suggest that the presence of longer acyl bearing aliphatic chain (5Cs) and aromatic groups could significantly affect the enzymatic activity.
  5. Najjar A, Abdullah N, Saad WZ, Ahmad S, Oskoueian E, Abas F, et al.
    Int J Mol Sci, 2014;15(2):2274-88.
    PMID: 24504029 DOI: 10.3390/ijms15022274
    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.
  6. Khoo HE, Azlan A, Ismail A, Abas F, Hamid M
    PLoS One, 2014;9(1):e81447.
    PMID: 24416130 DOI: 10.1371/journal.pone.0081447
    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+) and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.
  7. Lee, S.Y., Mediani, A., Nur Ashikin, A.H., Abas, F., Azliana, A.B.S.
    MyJurnal
    The study was aimed to determine the antioxidant and α-glucosidase inhibition activities of
    the stem and leaf of five different traditional medicinal plants. The studied plants exhibited
    varied antioxidant and α-glucosidase inhibition activities. The antioxidant activities of the
    plants were determined through their free radical scavenging capabilities using DPPH assay.
    The most potent antioxidant activity was demonstrated by Neptunia oleracea with an IC50 of
    35.45 and 29.72 μg/mL for leaf and stem, respectively. For α-glucosidase inhibition activity,
    Neptunia oleracea exhibited potential α-glucosidase inhibition activity with IC50 value of
    19.09 and 19.74 μg/mL for leaf and stem, respectively. The highest total phenolic content
    (TPC) was also marked in Neptunia oleracea leaf and stem with value of 40.88 and 21.21 mg
    GAE/g dry weight, respectively. The results also showed that Strobilanthes crispus collected
    from two different locations possessed different levels of phenolic content, antioxidant and
    α-glucosidase inhibition activities. The study revealed that phenolic compounds could be the
    main contributors to the antioxidant and α-glucosidase inhibition activities with R values of 78.9
    and 67.4%, respectively. In addition, antioxidant and α-glucosidase were positively correlated
    (R = 81.9%). Neptunia oleracea could be suggested as a potential natural source of antioxidant
    and antidiabetic compounds that can be used for the prevention or treatment of diabetes.
  8. Khoo LT, Abas F, Abdullah JO, Mohd Tohit ER, Hamid M
    PMID: 24987430 DOI: 10.1155/2014/614273
    Melastoma malabathricum Linn. is a perennial traditional medicine plants that grows abundantly throughout Asian countries. In this study, M. malabathricum Linn. leaf hot water crude extract with anticoagulant activity was purified through solid phase extraction cartridge and examined for the bioactive chemical constituents on blood coagulation reaction. The SPE purified fractions were, respectively, designated as F1, F2, F3, and F4, and each was subjected to the activated partial thromboplastin time (APTT) anticoagulant assay. Active anticoagulant fractions (F1, F2, and F3) were subjected to chemical characterisation evaluation. Besides, neutral sugar for carbohydrate part was also examined. F1, F2, and F3 were found to significantly prolong the anticoagulant activities in the following order, F1 > F2 > F3, in a dose dependent manner. In addition, carbohydrate, hexuronic acid, and polyphenolic moiety were measured for the active anticoagulant fractions (F1, F2, and F3). The characterisation of chemical constituents revealed that all these three fractions contained acidic polysaccharides (rhamnogalacturonan, homogalacturonan, and rhamnose hexose-pectic type polysaccharide) and polyphenolics. Hence, it was concluded that the presence of high hexuronic acids and polysaccharides, as well as polyphenolics in traditional medicinal plant, M. malabathricum, played a role in prolonging blood clotting in the intrinsic pathway.
  9. Ado MA, Abas F, Ismail IS, Ghazali HM, Shaari K
    J Sci Food Agric, 2015 Feb;95(3):635-42.
    PMID: 25048579 DOI: 10.1002/jsfa.6832
    The aim of the current study was (i) to evaluate the bioactive potential of the leaf methanolic extract of Cynometra cauliflora L., along with its respective hexane, dichloromethane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous fractions, in inhibiting the enzymes α-glucosidase, acetylcholinesterase (AChE) and tyrosinase as well as evaluating their antioxidant activities. (ii) In addition, in view of the limited published information regarding the metabolite profile of C. cauliflora, we further characterized the profiles of the EtOAc and n-BuOH fractions using liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry.
  10. Citalingam K, Abas F, Lajis NH, Othman I, Naidu R
    Molecules, 2015 Feb 17;20(2):3406-30.
    PMID: 25690296 DOI: 10.3390/molecules20023406
    Curcumin has poor in vivo absorption and bioavailability, highlighting a need for new curcumin analogues with better characteristics in these aspects. The aim of this study is to determine the anti-cancer properties of four selected curcumin analogues, on the cytotoxicity, proliferative and apoptotic effects on androgen-independent human prostate cancer cells (PC-3 and DU 145). Initial cytotoxicity screening showed MS17 has the highest cell inhibitory effect, with EC50 values of 4.4 ± 0.3 and 4.1 ± 0.8 µM, followed by MS13 (7.5 ± 0.1 and 7.4 ± 2.6 µM), MS49 (14.5 ± 1.2 and 12.3 ± 2.3 µM) and MS40E (28.0 ± 7.8 and 30.3 ± 1.9 µM) for PC-3 and DU 145 cells, respectively. Time-dependent analysis also revealed that MS13 and MS17 displayed a greater anti-proliferative effect than the other compounds. MS17 was chosen based on the high selectivity index value for further analysis on the morphological and biochemical hallmarks of apoptosis. Fluorescence microscopy analysis revealed apoptotic changes in both treated prostate cancer cells. Relative caspase-3 activity increased significantly at 48 h in PC-3 and 12 h in DU 145 cells. Highest enrichment of free nucleosomes was noted at 48 h after treatment with MS17. In conclusion, MS17 demonstrated anti-proliferative effect and induces apoptosis in a time and dose-dependent manner suggesting its potential for development as an anti-cancer agent for androgen-independent prostate cancer.
  11. Khoo LT, Abdullah JO, Abas F, Tohit ER, Hamid M
    Molecules, 2015 Feb 24;20(3):3697-715.
    PMID: 25719740 DOI: 10.3390/molecules20033697
    The aims of this study were to examine the bioactive component(s) responsible for the anticoagulant activity of M. malabathricum Linn. leaf hot water crude extract via bioassay-guided fractionation and to evaluate the effect of bioactive component(s) on the intrinsic blood coagulation pathway. The active anticoagulant fraction of F3 was subjected to a series of chromatographic separation and spectroscopic analyses. Furthermore, the effect of the bioactive component(s) on the intrinsic blood coagulation pathway was studied through immediate and time incubation mixing studies. Through Activated Partial Thromboplastin Time (APTT) assay-guided fractionation, Subfraction B was considered the most potent anticoagulant fraction. Characterisation of Subfraction B indicated that anticoagulant activity could partly be due to the presence of cinnamic acid and a cinnamic acid derivative. APTT assays for both the immediate and time incubation mixing were corrected back into normal clotting time range (35.4-56.3 s). In conclusion, cinnamic acid and cinnamic acid derivative from Subfraction B were the first such compounds to be discovered from M. malabathricum Linn. leaf hot water crude extract that possess anticoagulant activity. This active anticoagulant Subfraction B prolonged blood clotting time by causing factor(s) deficiency in the intrinsic blood coagulation pathway.
  12. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
  13. Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, et al.
    Int J Rheum Dis, 2015 Jul;18(6):616-27.
    PMID: 24832356 DOI: 10.1111/1756-185X.12341
    Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro.
  14. Leong SW, Mohd Faudzi SM, Abas F, Mohd Aluwi MF, Rullah K, Lam KW, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3330-7.
    PMID: 26071636 DOI: 10.1016/j.bmcl.2015.05.056
    A series of twenty-four 2-benzoyl-6-benzylidenecyclohexanone analogs were synthesized and evaluated for their nitric oxide inhibition and antioxidant activity. Six compounds (3, 8, 10, 17, 18 and 19) were found to exhibit significant NO inhibitory activity in LPS/IFN-induced RAW 264.7 macrophages, of which compound 10 demonstrated the highest activity with the IC50 value of 4.2 ± 0.2 μM. Furthermore, two compounds (10 and 17) displayed antioxidant activity upon both the DPPH scavenging and FRAP analyses. However, none of the 2-benzoyl-6-benzylidenecyclohexanone analogs significantly scavenged NO radical. Structure-activity comparison suggested that 3,4-dihydroxylphenyl ring is crucial for bioactivities of the 2-benzoyl-6-benzylidenecyclohexanone analogs. The results from this study and the reports from previous studies indicated that compound 10 could be a candidate for further investigation on its potential as a new anti-inflammatory agent.
  15. Yusof NA, Isha A, Ismail IS, Khatib A, Shaari K, Abas F, et al.
    J Sci Food Agric, 2015 Sep;95(12):2533-43.
    PMID: 25371390 DOI: 10.1002/jsfa.6987
    The metabolite changes in three germplasm accessions of Malaysia Andrographis paniculata (Burm. F.) Nees, viz. 11265 (H), 11341 (P) and 11248 (T), due to their different harvesting ages and times were successfully evaluated by attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy and translated through multivariate data analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). This present study revealed the feasibility of ATR-FTIR in detecting the trend changes of the major metabolites - andrographolide and neoandrographolide - functional groups in A. paniculata leaves of different accessions. The harvesting parameter was set at three different ages of 120, 150 and 180 days after transplanting (DAT) and at two different time sessions of morning (7:30-10:30 am) and evening (2:30-5.30 pm).
  16. Javadi N, Abas F, Mediani A, Abd Hamid A, Khatib A, Simoh S, et al.
    J Food Drug Anal, 2015 Sep;23(3):433-441.
    PMID: 28911700 DOI: 10.1016/j.jfda.2015.01.005
    Cosmos caudatus, which is a commonly consumed vegetable in Malaysia, is locally known as "Ulam Raja". It is a local Malaysian herb traditionally used as a food and medicinal herb to treat several maladies. Its bioactive or nutritional constituents consist of a wide range of metabolites, including glucosinolates, phenolics, amino acids, organic acids, and sugars. However, many of these metabolites are not stable and easily degraded or modified during storage. In order to investigate the metabolomics changes occurring during post-harvest storage, C. caudatus samples were subjected to seven different storage times (0 hours, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, and 12 hours) at room temperature. As the model experiment, the metabolites identified by gas chromatography-mass spectrometry (GC-MS) were correlated with α-glucosidase inhibitory activity analyzed with multivariate data analysis (MVDA) to find out the variation among samples and metabolites contributing to the activity. Orthogonal partial least squares (OPLS) analysis was applied to investigate the metabolomics changes. A profound chemical alteration, both in primary and secondary metabolites, was observed. The α-tocopherol, catechin, cyclohexen-1-carboxylic acid, benzoic acid, myo-inositol, stigmasterol, and lycopene compounds were found to be the discriminating metabolites at early storage; however, sugars such as sucrose, α-d-galactopyranose, and turanose were detected, which was attributed to the discriminating metabolites for late storage. The result shows that the MVDA method is a promising technique to identify biomarker compounds relative to storage at different times.
  17. Abdul-Hamid NA, Abas F, Ismail IS, Shaari K, Lajis NH
    J Food Sci, 2015 Nov;80(11):H2603-11.
    PMID: 26457883 DOI: 10.1111/1750-3841.13084
    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity.
  18. Syarina PN, Karthivashan G, Abas F, Arulselvan P, Fakurazi S
    EXCLI J, 2015;14:385-93.
    PMID: 27004048 DOI: 10.17179/excli2014-697
    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.
  19. Pariyani R, Ismail IS, Azam AA, Abas F, Shaari K, Sulaiman MR
    Biomed Res Int, 2015;2015:742420.
    PMID: 26819955 DOI: 10.1155/2015/742420
    The term Java tea refers to the decoction of Orthosiphon stamineus (OS) Benth (Lamiaceae) leaves, which are widely consumed by the people in Europe and South East Asian countries. The OS leaves are known for their use in traditional medicinal systems as a prophylactic and curative agent for urinary stone, diabetes, and hypertension and also as a diuretic agent. The present study was aimed at evaluating its possible toxicity. Herein, the major phytochemical constituents of microwave dried OS leaf, which is the common drying process for tea sachets in the market, were also identified. The acute oral toxicity test of aqueous, 50% aqueous ethanolic, and ethanolic extracts of OS was performed at a dose of 5000 mg/Kg body weight of Sprague-Dawley rats. During the 14-day study, the animals were observed for any mortality, behavioral, motor-neuronal abnormalities, body weight, and feed-water consumption pattern. The hematological and serum biochemical parameters to assess the kidney and liver functions were carried out, along with the histological analysis of these organs. It was found that all microwave dried OS leaf extracts did not cause any toxic effects or mortality at the administered dose. No abnormality was noticed in all selected parameters in rats of both sexes as compared with their respective control groups. Thus, the possible oral lethal dose for microwave dried Java tea leaves is more than 5000 mg/Kg body weight.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links