Displaying publications 41 - 60 of 95 in total

Abstract:
Sort:
  1. Lau YL, Lee WC, Gudimella R, Zhang G, Ching XT, Razali R, et al.
    PLoS One, 2016;11(6):e0157901.
    PMID: 27355363 DOI: 10.1371/journal.pone.0157901
    Toxoplasmosis is a widespread parasitic infection by Toxoplasma gondii, a parasite with at least three distinct clonal lineages. This article reports the whole genome sequencing and de novo assembly of T. gondii RH (type I representative strain), as well as genome-wide comparison across major T. gondii lineages. Genomic DNA was extracted from tachyzoites of T. gondii RH strain and its identity was verified by PCR and LAMP. Subsequently, whole genome sequencing was performed, followed by sequence filtering, genome assembly, gene annotation assignments, clustering of gene orthologs and phylogenetic tree construction. Genome comparison was done with the already archived genomes of T. gondii. From this study, the genome size of T. gondii RH strain was found to be 69.35Mb, with a mean GC content of 52%. The genome shares high similarity to the archived genomes of T. gondii GT1, ME49 and VEG strains. Nevertheless, 111 genes were found to be unique to T. gondii RH strain. Importantly, unique genes annotated to functions that are potentially critical for T. gondii virulence were found, which may explain the unique phenotypes of this particular strain. This report complements the genomic archive of T. gondii. Data obtained from this study contribute to better understanding of T. gondii and serve as a reference for future studies on this parasite.
  2. Khan NA, Anwar A, Siddiqui R
    Curr Med Chem, 2018 May 10.
    PMID: 29745319 DOI: 10.2174/0929867325666180510125633
    BACKGROUND: First discovered in the early 1970s, Acanthamoeba keratitis has remained a major eye infection and presents a significant threat to the public health, especially in developing countries. The aim is to present a timely review of our current understanding of the advances made in this field in a comprehensible manner and includes novel concepts and provides clear directions for immediate research priorities.

    METHOD: We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field.

    RESULTS: The present review focuses on novel diagnostic and therapeutic strategies in details which can provide access to management and treatment of Acanthamoeba keratitis. This coupled with the recently available genome sequence information together with high throughput genomics technology and innovative approaches should stimulate interest in the rational design of preventative and therapeutic measures. Current treatment of Acanthamoeba keratitis is problematic and often leads to infection recurrence. Better understanding of diagnosis, pathogenesis, pathophysiology and therapeutic regimens, would lead to novel strategies in treatment and prophylaxis.

  3. Khan NA, Anwar A, Siddiqui R
    ACS Chem Neurosci, 2017 11 15;8(11):2355.
    PMID: 28933530 DOI: 10.1021/acschemneuro.7b00343
    Brain-eating amoebae (Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri) can cause opportunistic infections involving the central nervous system. It is troubling that the mortality rate is more than 90% despite advances in antimicrobial chemotherapy over the last few decades. Here, we describe urgent key priorities for improving outcomes from infections due to brain-eating amoebae.
  4. Khan KA, Cong PT, Thang PD, Uyen PTM, Anwar A, Abbas A
    PMID: 38231329 DOI: 10.1007/s11356-023-31613-2
    Preserving the sustainability of the natural environment has emerged as a critical focus on policy agendas worldwide. Therefore, this study examines the relationship between environmental quality and key determinants, focusing on geopolitical risk (GPR), green innovations (GI), economic growth, FDI, renewable energy consumption, and urbanization. Dataset is used for the time period of 1990-2020 across selected Asian economies including China, India, Japan, Malaysia, and South Korea. Using load capacity factor (LCF) as a comprehensive proxy for environmental quality, the research utilizes panel quantile regression (QR) to provide empirical outcomes. Results of panel QR method reveal a negative impact of economic growth and GPR on LCF. On the other hand, green innovation, FDI, and renewable energy are found as supportive factors to boost environmental quality. In addition, urbanization also shows positive linkage with LCF. The application of Fully Modified Ordinary Least Squares (FMOLS) and Dynamic Ordinary Least Squares (DOLS) further validates the robustness of the findings. Adoption of green innovations, practicing sustainable growth patterns, transition toward cleaner energy practices, and integrated urban planning are advocated to enhance environmental quality among Asian nations. Based on empirical findings study suggests comprehensive policy measures that can help in achieving sustainable development goals (SDGs) including SDG-7 (energy efficiency), SDG-8 (sustainable economic growth), SDG-11 (sustainable cities), and SDG-13 (climate action) among Asian countries.
  5. Khalid K, Lim HX, Anwar A, Tan SH, Hwang JS, Ong SK, et al.
    AAPS PharmSciTech, 2024 Mar 12;25(3):60.
    PMID: 38472523 DOI: 10.1208/s12249-024-02778-x
    The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.
  6. Khairul, A.J., Anwar, A., Ramelah, M.
    MyJurnal
    Background: (13) C – urea breath test (UBT) is sensitive and specific for detection of Helicobacter pylori (H. pylori) infection. Gastric biopsy culture for H. pylori confirms the diagnosis. Here, we analyzed data of all patients who were investigated for H. pylori infection using both tests throughout the year 2005. Materials and Methods : Retrospective data of 377 patients between the ages of 17 – 88 were identified through endoscopy records from January to December 2005. Upper endoscopy, UBT and gastric biopsy culture were performed on all patients simultaneously during each endoscopy session. Patients who had positive UBT and biopsy culture for H. pylori were treated with triple therapy of PPI, amoxicillin and clarithromycin for one week. A repeat of UBT was done at one-month post therapy. Results and Analysis: Twenty-eight patients on the list had no available data on UBT and were omitted from the analysis. Ethnic group Chinese comprised of 45.4% (n=163), followed by Malay, 37.3% (n=134), Indian, 10.6% (n=38) and others, 3.9% (n=14). UBT was positive in 23.7% (n=85)(figure1). H. pylori culture was positive in 19.2% (n=69)(figure1). Sixteen patients with UBT positive had H. pylori culture negative, 18.8% (n=16/85)(figure2). Five patients with H. pylori culture positive had UBT negative, 7.2% (n=5/69)(figure3). Ethnic group Indian had the highest incidence of UBT positive, 47.4% (n=18/38), followed by Others (Sikhs and foreigners) 42.8% (n=6/14), the Chinese 27.6% (n=45/163) and the Malays 11.6% (n= 16/138). UBT positive was the highest in the age group of 50 and above, 64.7% (n=55/85), followed by the age group between 30 to 49, 21.2% (n=18/85) and the age group of 29 and below, 14.5% (n=12/85). Out of the 85 UBT positive patients 91.8% (n=78/85)(figure4) of them responded to the conventional one week of triple therapy (PPI, amoxicillin, clarithromycin) with negative UBT at one-month post therapy compared to only 8.2% (n=7/85)(figure4) who failed with positive UBT at one-month post therapy.
  7. Kanwal, Mungroo MR, Anwar A, Ali F, Khan S, Abdullah MA, et al.
    Exp Parasitol, 2020 Nov;218:107979.
    PMID: 32866583 DOI: 10.1016/j.exppara.2020.107979
    Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that can cause life-threatening infections involving the central nervous system. The high mortality rates of these infections demonstrate an urgent need for novel treatment options against the amoebae. Considering that indole and thiazole compounds possess wide range of antiparasitic properties, novel bisindole and thiazole derivatives were synthesized and evaluated against the amoebae. The antiamoebic properties of four synthetic compounds i.e., two new bisindoles (2-Bromo-4-(di (1H-indol-3-yl)methyl)phenol (denoted as A1) and 2-Bromo-4-(di (1H-indol-3-yl)methyl)-6-methoxyphenol (A2)) and two known thiazole (4-(3-Nitrophenyl)-2-(2-(pyridin-3-ylmethylene)hydrazinyl)thiazole (A3) and 4-(Biphenyl-4-yl)-2-(2-(1-(pyridin-4-yl)ethylidene)hydrazinyl)thiazole (A4)) were evaluated against B. mandrillaris and N. fowleri. The ability of silver nanoparticle (AgNPs) conjugation to enrich antiamoebic activities of the compounds was also investigated. The synthetic heterocyclic compounds demonstrated up to 53% and 69% antiamoebic activities against B. mandrillaris and N. fowleri respectively, while resulting in up to 57% and 68% amoebistatic activities, respectively. Antiamoebic activities of the compounds were enhanced by up to 71% and 51% against B. mandrillaris and N. fowleri respectively, after conjugation with AgNPs. These compounds exhibited potential antiamoebic effects against B. mandrillaris and N. fowleri and conjugation of synthetic heterocyclic compounds with AgNPs enhanced their activity against the amoebae.
  8. Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R
    SAGE Open Med, 2018;6:2050312118781962.
    PMID: 30034805 DOI: 10.1177/2050312118781962
    Objectives: To synthesize novel compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin classes and test their potential anticancer properties.

    Methods: Several compounds were synthesized and their molecular identity was confirmed using nuclear magnetic resonance. Potential anticancer properties were determined using cytopathogenicity assays and growth inhibition assays using cervical cancer cells (HeLa). Cells were incubated with different concentrations of compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins and effects were determined. HeLa cells cytopathogenicity was determined by measuring lactate dehydrogenase release using cytotoxicity detection assay. Growth inhibition assays were performed by incubating 50% semi-confluent HeLa cells with Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin compounds and HeLa cell proliferation was observed. Growth inhibition and host cell death were compared in the presence and absence of drugs.

    Results: Cytopathogenicity assays showed that the selected compounds were cytotoxic against HeLa cells, killing up to 90% of cells. Growth inhibition assays exhibited 100% growth inhibition. These effects are likely via oxidative stress, production of reactive oxygen species, changes in cytosolic and intracellular calcium/adenine nucleotide homeostasis, inhibition of ribonucleotide reductase/cyclooxygenase and/or glutathione depletion.

    Conclusions: Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins exhibited potent anticancer properties. These findings are promising and should pave the way in the rationale development of anticancer drugs. Using different cancer cell lines, future studies will determine their potential as anti-tumour agents as well as their precise molecular mode of action.

  9. Iqbal K, Abdalla SAO, Anwar A, Iqbal KM, Shah MR, Anwar A, et al.
    Antibiotics (Basel), 2020 May 25;9(5).
    PMID: 32466210 DOI: 10.3390/antibiotics9050276
    The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
  10. Hussain MA, Ahmed D, Anwar A, Perveen S, Ahmed S, Anis I, et al.
    Int Microbiol, 2019 Jun;22(2):239-246.
    PMID: 30810990 DOI: 10.1007/s10123-018-00043-3
    Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 μg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations.
  11. Erum H, Abid G, Anwar A, Ijaz MF, Kee DMH
    Eur J Investig Health Psychol Educ, 2021 Mar 30;11(2):321-333.
    PMID: 34708832 DOI: 10.3390/ejihpe11020024
    Family motivation as a mediating mechanism is a novel and under-researched area in the field of positive organizational scholarship. Drawing on Social Exchange Theory (SET), this study empirically validates family motivation as a mediator between family support and work engagement. The process by Hayes (2013) was used to analyze time-lagged data collected from 356 employees of the education sector. Results confirm the mediating role of family motivation in the relationship between family support and work engagement and the moderating role of calling in the relationship between family support and family motivation. This study adds to the literature of family-work enrichment accounts by validating family support as a novel antecedent for family motivation and positive attitudes. The implications of the study are discussed.
  12. Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA
    Antimicrob Agents Chemother, 2015;60(3):1283-8.
    PMID: 26666949 DOI: 10.1128/AAC.01123-15
    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth assays. In contrast, chlorhexidine alone, at a similar concentration, showed limited effects. Notably, neomycin alone or conjugated with nanoparticles did not show amoebicidal or amoebistatic effects. Pretreatment of A. castellanii with gold-conjugated chlorhexidine nanoparticles reduced amoeba-mediated host cell cytotoxicity from 90% to 40% at 5 μM. In contrast, chlorhexidine alone, at similar concentrations, had no protective effects for the host cells. Similarly, amoebae treated with neomycin alone or neomycin-conjugated nanoparticles showed no protective effects. Overall, these findings suggest that gold-conjugated chlorhexidine nanoparticles hold promise in the improved treatment of A. castellanii keratitis.
  13. Anwar A, Azmi KN, Hamidon BB, Khalid BA
    Med J Malaysia, 2006 Mar;61(1):28-35.
    PMID: 16708731 MyJurnal
    This study was conducted to compare the treatment efficacy between a prandial glucose regulator, repaglinide and a new sulphonylurea, glimepiride in Muslim Type 2 diabetic patients who practice Ramadan fasting. Forty-one patients, previously treated with a sulphonylurea or metformin, were divided to receive either repaglinide (n=20, preprandially three-times daily) or glimepiride (n=21, preprandially once daily) 3 months before the month of Ramadan. During Ramadan, patients modified their eating pattern to two meals daily, and the triple doses of repaglinide were redistributed to two preprandial doses. Four point blood glucose monitoring were performed weekly during the month of Ramadan and the subsequent month. Measurements of the 4-point blood glucose were significantly lower in the glimepiride group compared to the repaglinide group both during and after Ramadan. The glycaemic excursion was better in the morning for the repaglinide group and better in the afternoon and evening for the glimepiride group during the Ramadan period. There was no statistically significant difference in the incidence of hypoglycaemia between the two groups during and after Ramadan. There was no difference in the glycaemic excursion post-Ramadan. The longer duration of action of glimepiride may offer an advantage over repaglinide during the 13.5 hours of fast in Ramadan for diabetic patients.
  14. Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA
    Parasit Vectors, 2019 Jun 03;12(1):280.
    PMID: 31159839 DOI: 10.1186/s13071-019-3528-2
    BACKGROUND: Species of Acanthamoeba are facultative pathogens which can cause sight threatening Acanthamoeba keratitis and a rare but deadly brain infection, granulomatous amoebic encephalitis. Due to conversion of Acanthamoeba trophozoites to resistant cyst stage, most drugs are found to be ineffective at preventing recurrence of infection. This study was designed to test the antiacanthamoebic effects of different cobalt nanoparticles (CoNPs) against trophozoites and cysts, as well as parasite-mediated host cell cytotoxicity.

    METHODS: Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs.

    RESULTS: The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35-40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone.

    CONCLUSIONS: To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.

  15. Anwar A, Shahbaz MS, Saad SM, Kanwal, Khan KM, Siddiqui R, et al.
    Eur J Med Chem, 2019 Nov 15;182:111575.
    PMID: 31415900 DOI: 10.1016/j.ejmech.2019.111575
    We report one-pot synthesis of a series of new 3-aryl-8-methylquinazolin-4(3H)-ones (QNZ) and their antimicrobial activity against Acanthamoeba castellanii belonging to T4 genotype. A library of fifteen synthetic derivatives of QNZs was synthesized, and their structural elucidation was performed by using nuclear magnetic resonance (NMR) spectroscopy and electron impact mass spectrometry (EI-MS). Elemental analyses and high-resolution mass spectrometry data of all derivatives were found to be in agreeable range. Amoebicidal assays performed at concentrations ranging from 50 to 100 μg/mL revealed that all derivatives of QNZ significantly decreased the viability of A. castellanii and QNZ 2, 5, 8, and 13 were found to have efficient antiamoebic effects. Field emission scanning electron microscopy (FESEM) imaging of amoeba treated with compounds 5 and 15 showed that these compounds cause structural alterations on the walls of A. castellanii. Furthermore, several QNZs inhibited the encystation and excystationas as well as abolished A. castellanii-mediated host cells cytopathogenicity in human cells. Whereas, these QNZs showed negligible cytotoxicity when tested against human cells in vitro. Hence, this study identified potential lead molecules having promising properties for drug development against A. castellanii. A brief structure-activity relationship is also developed to optimize the hit of most potent compounds from the library. To the best of our knowledge, it is first of its kind medicinal chemistry approach on a single class of compounds i.e., quinazolinone against keratitis and brain infection causing free-living amoeba, A. castellanii.
  16. Anwar A, Ting ELS, Anwar A, Ain NU, Faizi S, Shah MR, et al.
    AMB Express, 2020 Feb 03;10(1):24.
    PMID: 32016777 DOI: 10.1186/s13568-020-0960-9
    Acanthamoeba spp. are the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis (GAE). The current options to treat Acanthamoeba infections have limited success. Silver nanoparticles show antimicrobial effects and enhance the efficacy of their payload at the specific biological targets. Natural folk plants have been widely used for treating diseases as the phytochemicals from several plants have been shown to exhibit amoebicidal effects. Herein, we used natural products of plant or commercial sources including quercetin (QT), kolavenic acid (PGEA) isolated from plant extracts of Polyalthia longifolia var pendula and crude plant methanolic extract of Caesalpinia pulcherrima (CPFLM) as antiacanthamoebic agents. Furthermore, these plant-based materials were conjugated with silver nanoparticles (AgNPs) to determine the effects of the natural compounds and their nanoconjugates against a clinical isolate of A. castellanii from a keratitis patient (ATCC 50492) belonging to the T4 genotype. The compounds were conjugated with AgNPs and characterized by using ultraviolet visible spectrophotometry and atomic force microscopy. Quercetin coated silver nanoparticles (QT-AgNPs) showed characteristic surface plasmon resonance band at 443 nm and the average size distribution was found to be around 45 nm. The natural compounds alone and their nanoconjugates were tested for the viability of amoebae, encystation and excystation activity against A. castellanii. The natural compounds showed significant growth inhibition of A. castellanii while QT-AgNPs specifically exhibited enhanced antiamoebic effects as well as interrupted the encystation and excystation activity of the amoebae. Interestingly, these compounds and nanoconjugates did not exhibit in vitro cytotoxic effects against human cells. Plant-based compounds and extracts could be an interesting strategy in development of alternative therapeutics against Acanthamoeba infections.
  17. Anwar A, Siddiqui R, Raza Shah M, Khan NA
    J Microbiol Biotechnol, 2019 May 28;29(5):713-720.
    PMID: 31030451 DOI: 10.4014/jmb/1903.03009
    Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.
  18. Anwar A, Siddiqui R, Hameed A, Shah MR, Khan NA
    Med Chem, 2020;16(7):841-847.
    PMID: 31544702 DOI: 10.2174/1573406415666190722113412
    BACKGROUND: Acanthamoeba is an opportunistic pathogen widely spread in the environment. Acanthamoeba causes excruciating keratitis which can lead to blindness. The lack of effective drugs and its ability to form highly resistant cyst are one of the foremost limitations against successful prognosis. Current treatment involves mixture of drugs at high doses but still recurrence of infection can occur due to ineffectiveness of drugs against the cyst form. Pyridine and its natural and synthetic derivatives are potential chemotherapeutic agents due to their diverse biological activities.

    OBJECTIVE: To study the antiamoebic effects of four novel synthetic dihydropyridine (DHP) compounds against Acanthamoeba castellanii belonging to the T4 genotype. Furthermore, to evaluate their activity against amoeba-mediated host cells cytopathogenicity as well as their cytotoxicity against human cells.

    METHODS: Dihydropyridines were synthesized by cyclic dimerization of alkylidene malononitrile derivatives. Four analogues of functionally diverse DHPs were tested against Acanthamoeba castellanii by using amoebicidal, encystation and excystation assays. Moreover, Lactate dehydrogenase assays were carried out to study cytopathogenicity and cytotoxicity against human cells.

    RESULTS: These compounds showed significant amoebicidal and cysticidal effects at 50 μM concentration, whereas, two of the DHP derivatives also significantly reduced Acanthamoebamediated host cell cytotoxicity. Moreover, these DHPs were found to have low cytotoxicity against human cells suggesting a good safety profile.

    CONCLUSION: The results suggest that DHPs have potential against Acanthamoeba especially against the more resistant cyst stage and can be assessed further for drug development.

  19. Anwar A, Siddiqui R, Shah MR, Khan NA
    PMID: 29967024 DOI: 10.1128/AAC.00630-18
    trans-Cinnamic acid (CA) is a natural organic compound. Using amoebicidal assays, for the first time we showed that CA affected the viability of the protist pathogen Acanthamoeba castellanii Conjugation with gold nanoparticles (AuNPs) enhanced the antiamoebic effects of CA. CA-coated AuNPs (CA-AuNPs) also exhibited significant excystation and encystation activity, compared to CA and AuNPs alone. Pretreatment of amoebae with CA-AuNPs inhibited A. castellanii-mediated host cell cytotoxicity. Moreover, CA-AuNPs exhibited potent effects against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1 and protected host cells against bacteria-mediated host cell death.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links