Displaying publications 41 - 60 of 107 in total

Abstract:
Sort:
  1. Mohammed AU, Aris AZ, Ramli MF, Isa NM, Arabi AS, Jabbo JN
    Environ Geochem Health, 2023 Jun;45(6):3891-3906.
    PMID: 36609946 DOI: 10.1007/s10653-022-01468-6
    Multiple interactions of geogenic and anthropogenic activities can trigger groundwater pollution in the tropical savanna watershed. These interactions and resultant contamination have been studied using applied geochemical modeling, conventional hydrochemical plots, and multivariate geochemometric methods, and the results are presented in this paper. The high alkalinity values recorded for the studied groundwater samples might emanate from the leaching of carbonate soil derived from limestone coupled with low rainfall and high temperature in the area. The principal component analysis (PCA) unveils three components with an eigenvalue > 1 and a total dataset variance of 67.37%; this implies that the temporary hardness of the groundwater and water-rock interaction with evaporite minerals (gypsum, halite, calcite, and trona) is the dominant factor affecting groundwater geochemistry. Likewise, the PCA revealed anthropogenic contamination by discharging [Formula: see text] [Formula: see text][Formula: see text] and [Formula: see text] from agricultural activities and probable sewage leakages. Hierarchical cluster analysis (HCA) also revealed three clusters; cluster I reflects the dissolution of gypsum and halite with a high elevated load of [Formula: see text] released by anthropogenic activities. However, cluster II exhibited high [Formula: see text] and [Formula: see text] loading in the groundwater from weathering of bicarbonate and sylvite minerals. Sulfate ([Formula: see text]) dominated cluster III mineralogy resulting from weathering of anhydrite. The three clusters in the Maiganga watershed indicated anhydrite, gypsum, and halite undersaturation. These results suggest that combined anthropogenic and natural processes in the study area are linked with saturation indexes that regulate the modification of groundwater quality.
  2. Mohammed AU, Aris AZ, Ramli MF, Isa NM, Suleiman Arabi A, Michael Orosun M
    PMID: 38060292 DOI: 10.1080/26896583.2023.2278957
    Elevated radon concentrations in drinking water pose an increased risk of cancer among nonsmokers. A Monte-Carlo Simulation was employed to assess the effective dose and cancer risk associated with radon exposure in humans, utilizing a systematic review and meta-analysis of related studies. These studies were sourced from databases including PubMed, Web of Science, Scopus, Science Direct, and Google Scholar, focusing on drinking water from Nigeria's six geopolitical zones. The random effects models revealed a 222Rn concentration in drinking water of Nigeria at 25.01, with 95% confidence intervals (CI) of 7.62 and 82.09, indicating significant heterogeneity of (I2 = 100%; p 
  3. Mohd Nasir FA, Praveena SM, Aris AZ
    Ecotoxicol Environ Saf, 2019 Dec 15;185:109681.
    PMID: 31561079 DOI: 10.1016/j.ecoenv.2019.109681
    Studies on the occurrence of pharmaceutical residues in drinking water were conducted especially in developed countries. However, limited studies reported the occurrence of pharmaceutical residues in developing countries. Thus, this study is conducted to fill the knowledge gap of pharmaceutical residue occurrences in developing countries, particularly in Malaysia, along with public awareness level and its potential human health risk. This study investigates public awareness level of drinking water quality and pharmaceutical handling, the occurrence of nine pharmaceutical residues (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and potential human health risks in drinking water from Kajang (Malaysia) using commercially competitive enzyme-linked immunosorbent assay kits. In general, the public awareness level of Kajang population showed poor knowledge (82.02%), and less positive attitude (98.88%) with a good practice score (57.3%). Ciprofloxacin was detected at the highest concentration (0.667 ng/L) while amoxicillin was at the lowest concentration (0.001 ng/L) in drinking water from Kajang (Malaysia). Nevertheless, all the reported occurrences were lower than previous studies conducted elsewhere. There was no appreciable potential human health risk for all the pharmaceutical residues as the risk quotient (RQ) values were less than 1 (RQ 
  4. Mokhtar MB, Praveena SM, Aris AZ, Yong OC, Lim AP
    Mar Pollut Bull, 2012 Nov;64(11):2556-63.
    PMID: 22901962 DOI: 10.1016/j.marpolbul.2012.07.030
    This study was designed as the first to assess the trace metal (Cd, Cu, Fe, Mn, Ni and Zn) in coral skeleton in relation to metal availabilities and sampling locations in Sabah. The study also aims to determine the differential abilities of Scleractinian coral species as a bioindicator of environmental conditions. Skeletons of Scleractinian coral (Hydnophora microconos, Favia speciosa and Porites lobata) showed concentrations of Fe, Mn and Ni relatively higher than Cd and Zn in the skeletons. Statistical analyses outputs showed significant relationships between trace metal concentrations in coral species and those in seawater and sediment. The highest bioaccumulation factors among three Scleractinian coral species investigated was for Zn followed by Mn, Ni, Fe, Cd and Cu can provide a sign about pollution levels. However, metal tolerance, coral structure and morphology as well as multispecies monitoring are factors that need to be a focus in future studies.
  5. Mustapha A, Aris AZ
    PMID: 22571534 DOI: 10.1080/10934529.2012.673305
    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.
  6. Mustapha A, Aris AZ, Ramli MF, Juahir H
    ScientificWorldJournal, 2012;2012:294540.
    PMID: 22919302 DOI: 10.1100/2012/294540
    Robust statistical tools were applied on the water quality datasets with the aim of determining the most significance parameters and their contribution towards temporal water quality variation. Surface water samples were collected from four different sampling points during dry and wet seasons and analyzed for their physicochemical constituents. Discriminant analysis (DA) provided better results with great discriminatory ability by using five parameters with (P < 0.05) for dry season affording more than 96% correct assignation and used five and six parameters for forward and backward stepwise in wet season data with P-value (P < 0.05) affording 68.20% and 82%, respectively. Partial correlation results revealed that there are strong (r(p) = 0.829) and moderate (r(p) = 0.614) relationships between five-day biochemical oxygen demand (BOD(5)) and chemical oxygen demand (COD), total solids (TS) and dissolved solids (DS) controlling for the linear effect of nitrogen in the form of ammonia (NH(3)) and conductivity for dry and wet seasons, respectively. Multiple linear regression identified the contribution of each variable with significant values r = 0.988, R(2) = 0.976 and r = 0.970, R(2) = 0.942 (P < 0.05) for dry and wet seasons, respectively. Repeated measure t-test confirmed that the surface water quality varies significantly between the seasons with significant value P < 0.05.
  7. Mustapha A, Aris AZ, Ramli MF, Juahir H
    PMID: 22702815 DOI: 10.1080/10934529.2012.680415
    The pollution status of the downstream section of the Jakara River was investigated. Dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), suspended solids (SS), pH, conductivity, salinity, temperature, nitrogen in the form of ammonia (NH(3)), turbidity, dissolved solids (DS), total solids (TS), nitrates (NO(3)), chloride (Cl) and phosphates (PO(3-)(4)) were evaluated, using both dry and wet season samples, as a measure of variation in surface water quality in the area. The results obtained from the analyses were correlated using Pearson's correlation matrix, principal component analysis (PCA) and paired sample t-tests. Positive correlations were observed for BOD(5), NH(3), COD, and SS, turbidity, conductivity, salinity, DS, TS for dry and wet seasons, respectively. PCA was used to investigate the origin of each water quality parameter, and yielded 5 varimax factors for each of dry and wet seasons, with 70.7 % and 83.1 % total variance, respectively. A paired sample t-test confirmed that the surface water quality varies significantly between dry and wet season samples (P < 0.01). The source of pollution in the area was concluded to be of anthropogenic origin in the dry season and natural origins in the wet season.
  8. Mustapha A, Aris AZ, Juahir H, Ramli MF, Kura NU
    Environ Sci Pollut Res Int, 2013 Aug;20(8):5630-44.
    PMID: 23443942 DOI: 10.1007/s11356-013-1542-z
    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.
  9. Nasir HM, Aris AZ, Abdullah LC, Ismail I
    PMID: 34129136 DOI: 10.1007/s10653-021-00999-8
    This study aims to formulate and fabricate the optimum condition of modified kenaf core (MKC) for the removal of targeted endocrine-disrupting compounds in a batch adsorption system. Kenaf core was chemically modified using phosphoric acid as an activating agent, which involved the pyrolysis step. Results indicated a significant difference (p  T1KC > T3KC, whereas that in the binary mixture system leads to T2KC > T1KC > T3KC and T1KC > T2KC > T3KC for E2 and EE2 adsorption, respectively, through hydrogen bonding and the π-π interaction mechanism. Thus, the findings revealed T2KC at a moderate level of acid concentration (0.5 M H3PO4) to be a potential biochar, with an environmentally safe and sound profile for opposing emerging pollutant issues as well as for the attainment of sustainable development goals.
  10. Nasir HM, Wee SY, Aris AZ, Abdullah LC, Ismail I
    Chemosphere, 2022 Mar;291(Pt 1):132726.
    PMID: 34718023 DOI: 10.1016/j.chemosphere.2021.132726
    Persistent endocrine-disrupting compounds (EDCs) in bodies of water are a concern for human health and constitute an environmental issue, even if present in trace amounts. Conventional treatment systems do not entirely remove EDCs from discharge effluent. Due to the ultra-trace level of EDCs which affect human health and pose an environmental issue, developing new approaches and techniques to remove these micropollutants from the discharged effluent is vital. This review discusses the most common methods of eliminating EDCs through preliminary, primary, secondary and tertiary treatments. The adsorption process is favoured for EDC removal, as it is an economical and straightforward option. The NABC aspects, which are the need, approach, benefits and challenges, were analysed based on existing circumstances, highlighting biochar as a green and renewable adsorbent for the removal of organic contaminants. From the environmental point of view, the effectiveness of this method, which uses natural fibre from the kenaf plant as a porous and economical biochar material with a selected lignocellulosic biomass, provides insights into the advantages of biochar-derived adsorbents. Essentially, the improvement of the natural fibre as an adsorbent is a focus, using carbonisation, activation, and the physiochemical process to enhance the adsorption ability of the material for pollutants in bodies of water. This output will complement sustainable water management approaches presented in previous studies for combating the emerging pollutant crisis via novel green and environmentally safe options.
  11. Navaretnam R, Hassan HN, Isa NM, Aris AZ, Looi LJ
    Environ Sci Pollut Res Int, 2023 Aug;30(37):87695-87720.
    PMID: 37423935 DOI: 10.1007/s11356-023-28459-z
    Rice is a predominant staple food in many countries. It is a great source of energy but can also accumulate toxic and trace metal(loid)s from the environment and pose serious health hazards to consumers if overdosed. This study aims to determine the concentration of toxic metal(loid)s [arsenic (As), cadmium (Cd), nickel (Ni)] and essential metal(loid)s [iron (Fe), selenium (Se), copper (Cu), chromium (Cr), cobalt (Co)] in various types of commercially available rice (basmati, glutinous, brown, local whites, and fragrant rice) in Malaysia, and to assess the potential human health risk. Rice samples were digested following the USEPA 3050B acid digestion method and the concentrations of metal(loid)s were analyzed using an inductively coupled plasma mass spectrometry (ICP-MS). Mean concentrations (mg/kg as dry weight) of metal(loid)s (n=45) across all rice types were found in the order of Fe (41.37)>Cu (6.51)>Cr (1.91)>Ni (0.38)>As (0.35)>Se (0.07)>Cd (0.03)>Co (0.02). Thirty-three percent and none of the rice samples surpassed, respectively, the FAO/WHO recommended limits of As and Cd. This study revealed that rice could be a primary exposure pathway to toxic metal(loid)s, leading to either noncarcinogenic or carcinogenic health problems. The non-carcinogenic health risk was mainly associated with As which contributed 63% to the hazard index followed by Cr (34%), Cd (2%), and Ni (1%). The carcinogenic risk to adults was high (>10-4) for As, Cr, Cd, and Ni. The cancer risk (CR) for each element was 5 to 8 times higher than the upper limit of cancer risk for an environmental carcinogen (<10-4). The findings from this study could provide the metal(loid)s pollution status of various types of rice which are beneficial to relevant authorities in addressing food safety and security-related issues.
  12. Omar NA, Praveena SM, Aris AZ, Hashim Z
    Food Chem, 2015 Dec 1;188:46-50.
    PMID: 26041162 DOI: 10.1016/j.foodchem.2015.04.087
    Little is known about the bioavailability of heavy metal contamination and its health risks after rice ingestion. This study aimed to determine bioavailability of heavy metal (As, Cd, Cu, Cr, Co, Al, Fe, Zn and Pb) concentrations in cooked rice and human Health Risk Assessment (HRA). The results found Zn was the highest (4.3±0.1 mg/kg), whereas As showed the lowest (0.015±0.001 mg/kg) bioavailability of heavy metal concentration in 22 varieties of cooked rice. For single heavy metal exposure, no potential of non carcinogenic health risks was found, while carcinogenic health risks were found only for As. Combined heavy metal exposures found that total Hazard Quotient (HQtotal) values for adult were higher than the acceptable range (HQTotal<1), whereas total Lifetime Cancer Risk (LCRTotal) values were higher than the acceptable range (LCRTotal values >1×10(-4)) for both adult and children. This study is done to understand that the inclusion of bioavailability heavy metal into HRA produces a more realistic estimation of human heavy metal exposure.
  13. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Environ Pollut, 2019 May;248:763-773.
    PMID: 30851586 DOI: 10.1016/j.envpol.2019.02.060
    The occurrence, level, and distribution of multiclass emerging organic contaminants (EOCs) in fish and mollusks from the Klang River estuary were examined. The targeted EOCs for this assessment were phenolic endocrine disrupting compounds (bisphenol A, 4-OP, and 4-NP), organophosphorous pesticides (quinalphos, chlorpyrifos, and diazinon), estrogenic hormones (E2, E1, and EE2), and pharmaceutically active chemicals (primidone, sulfamethoxazole, dexamethasone, diclofenac, amoxicillin, progesterone, and testosterone). Results from this study showed that the prevalent contamination of the Klang River estuary by EOCs with diclofenac, bisphenol A, progesterone, and amoxicillin were predominantly detected in fish and mollusks. Among the EOCs, diclofenac and progesterone had the highest concentrations in fish and mollusk samples, respectively. The concentrations of diclofenac and progesterone in fish and mollusk samples range from 1.42 ng/g to 10.76 ng/g and from 0.73 ng/g to 9.57 ng/g, respectively. Bisphenol A should also be highlighted because of its significant presence in both fish and mollusks. The concentration of bisphenol A in both matrices range from 0.92 ng/g to 5.79 ng/g. The calculated hazard quotient (HQ) for diclofenac, bisphenol A, and progesterone without consideration to their degradation byproduct were less than one, thus suggesting that the consumption of fish and mollusks from the Klang River estuary will unlikely pose any health risk to consumers on the basis of the current assessment. Nonetheless, this preliminary result is an important finding for pollution studies in Malaysian tropical coastal ecosystems, particularly for organic micropollutant EOCs, and can serve as a baseline database for future reference.
  14. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Talanta, 2017 Oct 01;173:51-59.
    PMID: 28602191 DOI: 10.1016/j.talanta.2017.05.064
    Estuary sediments are one of the important components of coastal ecosystems and have been regarded as a sink for various types of organic pollutants. Organic pollutants such as endocrine disrupting compounds (EDCs) which have been associated with various environmental and human health effects were detected in the estuary sediment at trace level. Considering various interferences that may exist in the estuarine sediment, a sensitive and selective method, capable of detecting multiclass EDC pollutants at the trace levels, needs to be developed and optimized to be applied for environmental analysis. A combination of Soxhlet extraction followed by offline solid phase extraction (SPE) cleaned up with detection based on LC triple quadrupole MS was optimized and validated in this study. The targeted compounds consisted of ten multiclass EDCs, namely, diclofenac, primidone, bisphenol A, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-octylphenol (4-OP), 4-nonylphenol (4-NP), progesterone, and testosterone. The method showed high extraction efficiency with percentage of recovery from 78% to 108% and excellent sensitivity with detection limit between 0.02ngg-1 and 0.81ngg-1. Excellent linearity from 0.991 to 0.999 was achieved for the developed compounds and the relative standard deviation was less than 18%, an indication of good precision analysis. Evaluation of the matrix effects showed ionization suppression for all the developed compounds. Verification of the method was carried out by analyzing the estuarine sediment collected from Langat River. The analyzed estuarine sediments showed a trace concentration of diclofenac, bisphenol A, progesterone, testosterone, primidone, and E1. However, E2, EE2, 4-OP, and 4-NP were below the method's detection limit. Diclofenac exhibited the highest concentration at 2.67ngg-1 followed by bisphenol A (1.78ngg-1) while E1 showed the lowest concentration at 0.07ngg-1.
  15. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Environ Geochem Health, 2019 Feb;41(1):211-223.
    PMID: 30051257 DOI: 10.1007/s10653-018-0157-1
    The concentration profile, distribution and risk assessment of pharmaceutically active compounds (PhACs) in the coastal surface water from the Klang River estuary were measured. Surface coastal water samples were extracted using offline solid phase, applying polymeric C18 cartridges as extraction sorbent and measuring with liquid chromatography mass spectrometry-mass spectrometry (LC MS-MS) technique. Extraction method was optimized for its recovery, sensitivity and linearity. Excellent recoveries were obtained from the optimized method with percentage of recoveries ranging from 73 to 126%. The optimized analytical method achieved good sensitivity with limit of detection ranging from 0.05 to 0.15 ng L-1, while linearity of targeted compounds in the LC MS-MS system was more than 0.990. The results showed that amoxicillin has the highest concentration (102.31 ng L-1) followed by diclofenac (10.80 ng L-1) and primidone (7.74 ng L-1). The percentage of contribution (% of total concentration) for the targeted PhACs is in the following order; amoxicillin (92.90%) > diclofenac (3.95%) > primidone (1.23%) > dexamethasone (0.75%) > testosterone (0.70%) > sulfamethoxazole (0.33%) > progesterone (0.14%). Environmental risk assessment calculated based on deterministic approach (the RQ method), showed no present risk from the presence of PhACs in the coastal water of Klang River estuary. Nonetheless, this baseline assessment can be used for better understanding on PhACs pollution profile and distribution in the tropical coastal and estuarine ecosystem as well as for future comparative studies.
  16. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Mar Pollut Bull, 2018 Jun;131(Pt A):284-293.
    PMID: 29886949 DOI: 10.1016/j.marpolbul.2018.04.019
    This baseline assessment reports on the occurrence, distribution, and sources of emerging organic contaminants (EOCs) in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Bisphenol A was the highest concentration detected at 16.84 ng g-1 dry weight, followed by diclofenac (13.88 ng g-1 dry weight) and E1 (12.47 ng g-1 dry weight). Five compounds, namely, amoxicillin, progesterone, diazinon, bisphenol A, and E1, were found in all sampling stations assessed, and other compounds such as primidone, diclofenac, testosterone, E2, and EE2 were ubiquitously present in sediment samples, with percentage of detection range from 89.04% to 98.38%. Organic carbon content and pH were the important factors controlling the fate of targeted compounds in the tropical estuarine sediment. On the basis of the literature from other studies, the sources of EOCs are thought to be from wastewater treatment plants, domestic/medical waste discharge, livestock activities, industrial waste discharge, and agricultural activities.
  17. Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ
    Bull Environ Contam Toxicol, 2008 Jul;81(1):52-6.
    PMID: 18506379 DOI: 10.1007/s00128-008-9460-3
    Spatial variations in estuarine intertidal sediment have been often related to such environmental variables as salinity, sediment types, heavy metals and base cations. However, there have been few attempts to investigate the difference condition between high and low tides relationships and to predict their likely responses in an estuarine environment. This paper investigates the linkages between environmental variables and tides of estuarine intertidal sediment in order to provide a basis for describing the effect of tides in the Mengkabong lagoon, Sabah. Multivariate statistical technique, principal components analysis (PCA) was employed to better interpret information about the sediment and its controlling factors in the intertidal zone. The calculation of Geoaccumulation Index (I(geo)) suggests the Mengkabong mangrove sediments are having background concentrations for Al, Cu, Fe, and Zn and unpolluted for Pb. Extra efforts should therefore pay attention to understand the mechanisms and quantification of different pathways of exchange within and between intertidal zones.
  18. Praveena SM, Aris AZ
    Mar Pollut Bull, 2013 Feb 15;67(1-2):196-9.
    PMID: 23260650 DOI: 10.1016/j.marpolbul.2012.11.037
    Tidal variation in tropical coastal water plays an important role on physicochemical characteristics and nutrients concentration. Baseline measurements were made for nutrients concentration and physicochemical properties of coastal water, Port Dickson, Malaysia. pH, temperature, oxidation reduction potential, salinity and electrical conductivity have high values at high tides. Principal Components Analysis (PCA) was used to understand spatial variation of nutrients and physicochemical pattern of Port Dickson coastal water at high and low tide. Four principal components of PCA were extracted at low and high tides. Positively loaded nutrients with negative loadings of DO, pH and ORP in PCA outputs indicated nutrients contribution related with pollution sources. This study output will be a baseline frame for future studies in Port Dickson involving water and sediment samples. Water and sediment samples of future monitoring studies in Port Dickson coastal water will help in understanding of coastal water chemistry and pollution sources.
  19. Praveena SM, Shamira SS, Ismail SNS, Aris AZ
    Mar Pollut Bull, 2016 Sep 15;110(1):609-612.
    PMID: 27289286 DOI: 10.1016/j.marpolbul.2016.06.024
    This pilot study aims to assess Escherichia coli (E. coli) contamination and its perceived health risks among beachgoers in ten tropical beach sands along Port Dickson coastline (Malaysia). This study also aims to determine the relationship between perceived health symptoms and tropical beach sand exposure behavior. The concentration of E. coli in tropical beach sand ranged from 60cfu/100g to 4113cfu/100g. E. coli contamination was the highest at Tanjung Gemuk (4113±30cfu/100g) and the lowest at Tanjung Tuan (60±15cfu/100g); the high level of contamination could be due to the location of the former at the sewage outlet of nearby hotels. Skin symptoms were the most predominant among the health symptoms indicated by beachgoers. Exposure duration was significantly correlated with the perceived health symptoms among beachgoers in the beaches studied.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links