METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.
RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.
CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.
PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line.
MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented.
RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing.
CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.
PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties.
STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded.
PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures.
MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells.
COVARIATES: Not applicable.
ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P
METHODS: Fourier Transform Infrared Spectroscopy (FTIR) was performed after complete hydrolysis of K21 solution. Human teeth were inoculated with biofilms for 7-days followed by treatment with various irrigants. The irrigant groups were Sodium hypochlorite [NaOCl (6%)], Chlorhexidine [CHX (2%)], K21 (0.5%), K21 (1%) and Saline. Scanning electron microscopy (SEM) was performed for biofilm and resin-dentin penetration. Transmission Electron Microscopy (TEM) of biofilms was done to evaluate application of K21. For in vivo evaluation, Albino wistar rats were injected subcutaneously and sections were stained with haematoxylin/eosin. Macrophage, M1/M2 expression were evaluated along with molecular simulation. Raman measurements were done on dried biofilms.
RESULTS: FTIR K21 specimens demonstrated presence of ethanol/silanol groups. Raman band at 1359 cm-1 resemble to -CH2- wagging displaying 29Si atoms in Nuclear Magnetic Resonance (NMR). 0.5%K21 showed cells exhibiting folded membranes. SEM showed staggering amount of resin tags with 0.5% K21 group. TEM showed membrane disruption in K21-groups. K21 groups were initially irritant, which subsided completely afterwards showing increased CD68. K21 and MMP/collagen complex was thermodynamically favourable.
CONCLUSION: K21 root canal irrigant was able to penetrate bacterial wall and can serve as a potential irrigant for therapeutic benefits. Expression of M2 polarized subsets showed K21 can serve in resolving inflammation and potentiate tissue repair.