Displaying publications 41 - 60 of 92 in total

Abstract:
Sort:
  1. Khan A, Hussain S, Ahmad S, Suleman M, Bukhari I, Khan T, et al.
    Comput Biol Med, 2022 02;141:105163.
    PMID: 34979405 DOI: 10.1016/j.compbiomed.2021.105163
    The spike protein of SARS-CoV-2 and the host ACE2 receptor plays a vital role in the entry to the cell. Among which the hotspot residue 501 is continuously subjected to positive selection pressure and induces unusual virulence. Keeping in view the importance of the hot spot residue 501, we predicted the potentially emerging structural variants of 501 residue. We analyzed the binding pattern of wild type and mutants (Spike RBD) to the ACE2 receptor by deciphering variations in the amino acids' interaction networks by graph kernels along with evolutionary, network metrics, and energetic information. Our analysis revealed that N501I, N501T, and N501V increase the binding affinity and alter the intra and inter-residue bonding networks. The N501T has shown strong positive selection and fitness in other animals. Docking results and repeated simulations (three times) confirmed the structural stability and tighter binding of these three variants, correlated with the previous results following the global stability trend. Consequently, we reported three variants N501I, N501T, and N501V could worsen the situation further if they emerged. The relations between the viral fitness and binding affinity is a complicated game thus the emergence of high affinity mutations in the SARS-CoV-2 RBD brings up the question of whether or not positive selection favours these mutations or not?
  2. Khalid MF, Hussain S, Anjum MA, Morillon R, Ahmad S, Ejaz S, et al.
    PLoS One, 2021;16(4):e0247558.
    PMID: 33831006 DOI: 10.1371/journal.pone.0247558
    Water shortage is among the major abiotic stresses that restrict growth and productivity of citrus. The existing literature indicates that tetraploid rootstocks had better water-deficit tolerance than corresponding diploids. However, the associated tolerance mechanisms such as antioxidant defence and nutrient uptake are less explored. Therefore, we evaluated physiological and biochemical responses (antioxidant defence, osmotic adjustments and nutrient uptake) of diploid (2x) and tetraploid (4x) volkamer lemon (VM) rootstocks grafted with kinnow mandarin (KM) under two water-deficit regimes. The KM/4xVM (VM4) and KM/2xVM (VM2) observed decrease in photosynthetic variables, i.e., photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), leaf greenness (SPAD), dark adopted chlorophyll fluorescence (Fv/Fm), dark adopted chlorophyll fluorescence (Fv´/Fm´), relative water contents (RWC) and leaf surface area (LSA), and increase in non-photochemical quenching (NPQ) under both water-deficit regimes. Moreover, oxidative stress indicators, i.e., malondialdehyde (MDA) and hydrogen peroxide, and activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APx), glutathione reductase (GR) were increased under both water-deficit regimes. Nonetheless, increase was noted in osmoprotectants such as proline (PRO) and glycine betaine (GB) and other biochemical compounds, including antioxidant capacity (AC), total phenolic content (TPC) and total soluble protein (TSP) in VM2 and VM4 under both water-deficit regimes. Dry biomass (DB) of both rootstocks was decreased under each water-deficit condition. Interestingly, VM4 showed higher and significant increase in antioxidant enzymes, osmoprotectants and other biochemical compounds, while VM2 exhibited higher values for oxidative stress indicators. Overall, results indicated that VM4 better tolerated water-deficit stress by maintaining photosynthetic variables associated with strong antioxidant defence machinery as compared to VM2. However, nutrient uptake was not differed among tested water-deficit conditions and rootstocks. The results conclude that VM4 can better tolerate water-deficit than VM2. Therefore, VM4 can be used as rootstock in areas of high-water deficiency for better citrus productivity.
  3. Jan S, Yafi E, Hafeez A, Khatana HW, Hussain S, Akhtar R, et al.
    Sensors (Basel), 2021 Apr 25;21(9).
    PMID: 33922886 DOI: 10.3390/s21093000
    A significant increase has been observed in the use of Underwater Wireless Sensor Networks (UWSNs) over the last few decades. However, there exist several associated challenges with UWSNs, mainly due to the nodes' mobility, increased propagation delay, limited bandwidth, packet duplication, void holes, and Doppler/multi-path effects. To address these challenges, we propose a protocol named "An Efficient Routing Protocol based on Master-Slave Architecture for Underwater Wireless Sensor Network (ERPMSA-UWSN)" that significantly contributes to optimizing energy consumption and data packet's long-term survival. We adopt an innovative approach based on the master-slave architecture, which results in limiting the forwarders of the data packet by restricting the transmission through master nodes only. In this protocol, we suppress nodes from data packet reception except the master nodes. We perform extensive simulation and demonstrate that our proposed protocol is delay-tolerant and energy-efficient. We achieve an improvement of 13% on energy tax and 4.8% on Packet Delivery Ratio (PDR), over the state-of-the-art protocol.
  4. Islam T, Bhoo-Pathy N, Su TT, Majid HA, Nahar AM, Ng CG, et al.
    BMJ Open, 2015 Oct 26;5(10):e008643.
    PMID: 26503386 DOI: 10.1136/bmjopen-2015-008643
    INTRODUCTION: Over recent decades, the burden of breast cancer has been increasing at an alarming rate in Asia. Prognostic research findings from Western countries may not readily be adapted to Asia, as the outcome of breast cancer depends on a multitude of factors ranging from genetic, clinical and histological predictors, to lifestyle and social predictors. The primary aim of this study is to determine the impact of lifestyle (eg, nutrition, physical activity), mental and sociocultural condition, on the overall survival and quality of life (QoL) among multiethnic Malaysian women following diagnosis of breast cancer. This study aims to advance the evidence on prognostic factors of breast cancer within the Asian setting. The findings may guide management of patients with breast cancer not only during active treatment but also during the survivorship period.

    METHODS: This hospital-based prospective cohort study will comprise patients with breast cancer (18 years and above), managed in the University Malaya Medical Centre (UMMC). We aim to recruit 1000 cancer survivors over a 6-year period. Data collection will occur at baseline (within 3 months of diagnosis), 6 months, and 1, 3 and 5 years following diagnosis. The primary outcomes are disease-free survival and overall survival, and secondary outcome is QoL. Factors measured are demographic and socioeconomic factors, lifestyle factors (eg, dietary intake, physical activity), anthropometry measurements (eg, height, weight, waist, hip circumference, body fat analysis), psychosocial aspects, and complementary and alternative medicine (CAM) usage.

    ETHICS AND DISSEMINATION: This protocol was approved by the UMMC Ethical Committee in January 2012. All participants are required to provide written informed consent. The findings from our cohort study will be disseminated via scientific publication as well as presentation to stakeholders including the patients, clinicians, the public and policymakers, via appropriate avenues.

  5. Inayat-Hussain SH, Chan KM, Rajab NF, Din LB, Chow SC, Kizilors A, et al.
    Toxicol Lett, 2010 Mar 1;193(1):108-14.
    PMID: 20026395 DOI: 10.1016/j.toxlet.2009.12.010
    Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.
  6. Inayat-Hussain SH, Rajab NF, Roslie H, Hussin AA, Ali AM, Annuar BO
    Med J Malaysia, 2004 May;59 Suppl B:176-7.
    PMID: 15468875
    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
  7. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D
    Toxicol In Vitro, 2003 Aug;17(4):433-9.
    PMID: 12849726
    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.
  8. Inayat-Hussain SH, Osman AB, Din LB, Ali AM, Snowden RT, MacFarlane M, et al.
    FEBS Lett., 1999 Aug 13;456(3):379-83.
    PMID: 10462048
    Goniothalamin, a plant styrylpyrone derivative isolated from Goniothalamus andersonii, induced apoptosis in Jurkat T-cells as assessed by the externalisation of phosphatidylserine. Immunoblotting showed processing of caspases-3 and -7 with the appearance of their catalytically active large subunits of 17 and 19 kDa, respectively. Activation of these caspases was further evidenced by detection of poly(ADP-ribose) polymerase cleavage (PARP). Pre-treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked apoptosis and the resultant cleavage of these caspases and PARP. Our results demonstrate that activation of at least two effector caspases is a key feature of goniothalamin-induced apoptosis in Jurkat T-cells.
  9. Inayat-Hussain SH, McGuinness SM, Johansson R, Lundstrom J, Ross D
    Chem Biol Interact, 2000 Aug 15;128(1):51-63.
    PMID: 10996300
    The hydroquinone and catechol like metabolites, NCQ344 and NCQ436 respectively, of the antipsychotic remoxipride have recently been demonstrated to induce apoptosis in myeloperoxidase (MPO)-rich human bone marrow progenitor and HL-60 cells [S.M. McGuinness, R. Johansson, J. Lundstrom, D. Ross, Induction of apoptosis by remoxipride metabolites in HL-60 and CD34+/CD19- human bone marrow progenitor cells: potential relevance to remoxipride-induced aplastic anemia, Chem. Biol. Interact. 121 (1999) 253-265]. In the present study, we determined the molecular mechanisms of apoptosis induced by these remoxipride metabolites in HL-60 cells. Our results show that apoptosis was accompanied by phosphatidylserine (PS) exposure, activation of caspases-9, -3, -7 and DNA cleavage. In HL-60 cells treated with the hydroquinone NCQ344 and catechol NCQ436, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp. fluoromethyl ketone (Z-VAD.FMK) blocked DNA cleavage and activation of caspases-9, -3/-7. In addition, PS exposure was significantly but not completely inhibited by Z-VAD.FMK. These results demonstrate that although Z-VAD.FMK inhibitable caspases are necessary for maximal apoptosis induced by NCQ344 and NCQ436, additional caspase-independent processes may orchestrate changes leading to PS exposure during apoptosis induced by the remoxipride polyphenolic metabolites.
  10. Inayat-Hussain SH, Ibrahim HA, Siew EL, Rajab NF, Chan KM, G T Williams, et al.
    Chem Biol Interact, 2010 Mar 19;184(1-2):310-2.
    PMID: 20025857 DOI: 10.1016/j.cbi.2009.12.009
  11. Inayat-Hussain SH, Wong LT, Chan KM, Rajab NF, Din LB, Harun R, et al.
    Toxicol Lett, 2009 Dec 15;191(2-3):118-22.
    PMID: 19698770 DOI: 10.1016/j.toxlet.2009.08.012
    Goniothalamin, a styryllactone, has been shown to induce cytotoxicity via apoptosis in several tumor cell lines. In this study, we have examined the potential role of several genes, which were stably transfected into T-cell lines and which regulate apoptosis in different ways, on goniothalamin-induced cell death. Overexpression of full-length receptor for activated protein C-kinase 1 (RACK-1) and pc3n3, which up-regulates endogenous RACK-1, in both Jurkat and W7.2 T cells resulted in inhibition of goniothalamin-induced cell death as assessed by MTT and clonogenic assays. However, overexpression of rFau (antisense sequence to Finkel-Biskis-Reilly murine sarcoma virus-associated ubiquitously expressed gene) in W7.2 cells did not confer resistance to goniothalamin-induced cell death. Etoposide, a clinically used cytotoxic agent, was equipotent in causing cytotoxicity in all the stable transfectants. Assessment of DNA damage by Comet assay revealed goniothalamin-induced DNA strand breaks as early as 1 h in vector control but this effect was inhibited in RACK-1 and pc3n3 stably transfected W7.2 cells. This data demonstrate that RACK-1 plays a crucial role in regulating cell death signalling pathways induced by goniothalamin.
  12. Inayat-Hussain SH, Cohen GM, Cain K
    Cell Biol Toxicol, 1999;15(6):381-7.
    PMID: 10811533
    There is now a wealth of information regarding the apoptotic mode of cell death and its importance in toxicological studies in many mammalian organs including the liver. In this study, we investigated the modulatory effects of the heavy metal Zn2+ on transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in primary rat hepatocytes. Apoptosis induced by TGF-beta1 (1 ng/ml) in hepatocytes was accompanied by nuclear condensation as assessed morphologically by staining with Hoechst 33258 and DNA cleavage as detected biochemically by in situ end-labeling, field inversion and conventional gel electrophoresis. Pretreatment with 100 micromol/L Zn2+ abrogated the nuclear condensation, in situ end-labeling, and DNA laddering in TGF-beta1-treated hepatocytes. Surprisingly, Zn2+ did not inhibit the formation of high-molecular-weight DNA fragments (30-50 kbp to 250-300 kbp). These data provide evidence that Zn2+ exerts its effects on the endonucleases that act downstream in the execution phase of TGF-beta1-induced apoptosis in hepatocytes.
  13. Hussain S, Aziz HA, Isa MH, Adlan MN, Asaari FA
    Bioresour Technol, 2007 Mar;98(4):874-80.
    PMID: 16716587
    The purpose of the present study was to examine the removal of ammoniacal nitrogen (NH4-N) from synthetic wastewater using limestone (LS) and granular activated carbon (GAC) mixture as low cost adsorbent. In batch study, optimum shaking and settling times were 150 and 120 min, respectively. The LS-GAC mixture ratio of 25:15 removed about 58% NH4-N. The smaller particle size of medium yielded higher adsorption capacity. The equilibrium adsorption data followed the Freundlich isotherm (R2 > 0.98) but it showed weak bond. Adsorption kinetics were well described by the pseudo second-order rate model (R2 > 0.93). The upflow column showed that higher flow rate and initial concentration resulted in shorter column saturation time. The study showed that the usage of GAC could be reduced by combining GAC with LS for the removal of NH4-N from wastewater; thus reducing the cost of treatment.
  14. Hussain S, Mohd Ali J, Jalaludin MY, Harun F
    Pediatr Diabetes, 2013 Jun;14(4):299-303.
    PMID: 23350652 DOI: 10.1111/pedi.12011
    We report a rare case of permanent neonatal diabetes (PND) due to insulin (INS) gene mutation in a 51-month-old girl who presented with hyperglycemia in the neonatal period. Mutational analysis of KCNJ11 and INS was performed and this detected a novel heterozygous c.38T>G (p.Leu13Arg) INS de novo mutation. The non-conservative change substitutes the highly conserved L(13) residue within the hydrophobic core region of the preproinsulin signal peptide. Given the frequent tendency of heterozygous INS mutations to exhibit dominant negative disease pathogenesis, it is likely that the mutant preproinsulin perturbed the non-mutant counterpart progression and processing within the β-cells, and this resulted to a permanent form of congenital diabetes.
  15. Hussain S, Berki DM, Choon SE, Burden AD, Allen MH, Arostegui JI, et al.
    J Allergy Clin Immunol, 2015 Apr;135(4):1067-1070.e9.
    PMID: 25458002 DOI: 10.1016/j.jaci.2014.09.043
  16. Hussain S, Ullah F, Sadiq A, Ayaz M, Shah AA, Ali Shah SA, et al.
    Curr Top Med Chem, 2019;19(30):2805-2813.
    PMID: 31702502 DOI: 10.2174/1568026619666191105103801
    BACKGROUND: Liver cancer is a devastating cancer with increasing incidence and mortality rates worldwide. Plants possess numerous therapeutic properties, therefore the search for novel, naturally occurring cytotoxic compounds is urgently needed.

    METHODS: The anticancer activity of plant extracts and isolated compounds from Anchusa arvensis (A. arvensis) were studied against the cell culture of HepG-2 (human hepatocellular carcinoma cell lines) using 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. Apoptosis was investigated by performing Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study. We also used tools for computational chemistry studies of isolated compounds with the tyrosine kinase.

    RESULTS: In MTT assay, the crude extract caused a significant cytotoxic effect with IC50 of 34.14 ± 0.9 μg/ml against HepG-2 cell lines. Upon fractionation, chloroform fraction (Aa.Chm) exhibited the highest antiproliferative activity with IC50 6.55 ± 1.2 μg/ml followed by ethyl acetate (Aa.Et) fraction (IC50, 24.59 ± 0.85 μg/ml) and n-hexane (Aa.Hex) fraction (IC50 29.53 ± 1.5μg/ml). However, the aqueous (Aa.Aq) fraction did not show any anti-proliferative activity. Bioactivity-guided isolation led to the isolation of two compounds which were characterized as para-methoxycatechol (1) and decane (2) through various spectroscopic techniques. Against HepG-2 cells, compound 1 showed marked potency with IC50 6.03 ± 0.75 μg/ml followed by 2 with IC50 18.52 ± 1.9 μg/ml. DMSO was used as a negative control and doxorubicin as a reference standard (IC50 1.3 ± 0.21 μg/ml). It was observed that compounds 1-2 caused apoptotic cell death evaluated by Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study, therefore both compounds were tested for molecular docking studies against tyrosine kinase to support cytotoxic activity.

    CONCLUSION: This study revealed that the plant extracts and isolated compounds possess promising antiproliferative activity against HepG-2 cell lines via apoptotic cell death.

  17. Hussain S, Ullah F, Ayaz M, Ali Shah SA, Ali Shah AU, Shah SM, et al.
    Drug Des Devel Ther, 2019;13:4195-4205.
    PMID: 31849451 DOI: 10.2147/DDDT.S228971
    Background: Cancer is one of the chronic health conditions worldwide. Various therapeutically active compounds from medicinal plants were the current focus of this research in order to uncover a treatment regimen for cancer. Anchusa arvensis (A. anchusa) (L.) M.Bieb. contains many biologically active compounds.

    Methods: In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase.

    Results: The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme.

    Conclusion: Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.

  18. Hussain S, Mustafa MW, Al-Shqeerat KHA, Saeed F, Al-Rimy BAS
    Sensors (Basel), 2021 Dec 17;21(24).
    PMID: 34960516 DOI: 10.3390/s21248423
    This study presents a novel feature-engineered-natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially executed in three stages: data pre-processing, feature engineering, and model evaluation. It utilized the random forest algorithm-based imputation technique initially to impute the missing data entries in the acquired smart meter dataset. In the second phase, the majority weighted minority oversampling technique (MWMOTE) algorithm was used to avoid an unequal distribution of data samples among different classes. The time-series feature-extraction library and whale optimization algorithm were utilized to extract and select the most relevant features from the kWh reading of consumers. Once the most relevant features were acquired, the model training and testing process was initiated by using the NGBoost algorithm to classify the consumers into two distinct categories ("Healthy" and "Theft"). Finally, each input feature's impact (positive or negative) in predicting the target variable was recognized with the tree SHAP additive-explanations algorithm. The proposed framework achieved an accuracy of 93%, recall of 91%, and precision of 95%, which was greater than all the competing models, and thus validated its efficacy and significance in the studied field of research.
  19. Hussain S, Tunç O, Rahman GU, Khan H, Nadia E
    Math Comput Simul, 2023 May;207:130-150.
    PMID: 36618952 DOI: 10.1016/j.matcom.2022.12.023
    The "Middle East Respiratory" (MERS-Cov) is among the world's dangerous diseases that still exist. Presently it is a threat to Arab countries, but it is a horrible prediction that it may propagate like COVID-19. In this article, a stochastic version of the epidemic model, MERS-Cov, is presented. Initially, a mathematical form is given to the dynamics of the disease while incorporating some unpredictable factors. The study of the underlying model shows the existence of positive global solution. Formulating appropriate Lyapunov functionals, the paper will also explore parametric conditions which will lead to the extinction of the disease from a community. Moreover, to reveal that the infection will persist, ergodic stationary distribution will be carried out. It will also be shown that a threshold quantity exists, which will determine some essential parameters for exploring other dynamical aspects of the main model. With the addition of some examples, the underlying stochastic model of MERS-Cov will be studied graphically for more illustration.
  20. Hussain S, Javed W, Tajammal A, Khalid M, Rasool N, Riaz M, et al.
    ACS Omega, 2023 May 16;8(19):16600-16611.
    PMID: 37214690 DOI: 10.1021/acsomega.2c06785
    Current studies were performed to investigate the phytochemistry, synergistic antibacterial, antioxidant, and hemolytic activities of ethanolic and aqueous extracts of Azadirachta indica (EA and WA) and Cymbopogon citratus (EC and WC) leaves. Fourier transform infrared data verified the existence of alcoholic, carboxylic, aldehydic, phenyl, and bromo moieties in plant leaves. The ethanolic extracts (EA and EC) were significantly richer in phenolics and flavonoids as compared to the aqueous extracts (WA and WC). The ethanolic extract of C. citratus (EC) contained higher concentrations of caffeic acid (1.432 mg/g), synapic acid (6.743 mg/g), and benzoic acid (7.431 mg/g) as compared to all other extracts, whereas chlorogenic acid (0.311 mg/g) was present only in the aqueous extract of A. indica (WA). Food preservative properties of C. citratus can be due to the presence of benzoic acid (7.431 mg/g). -Gas chromatography-mass spectrometry analysis demonstrated the presence of 36 and 23 compounds in A. indica and C. citratus leaves, respectively. Inductively coupled plasma analysis was used to determine the concentration of 26 metals (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sn, Sr, V, Zn, Zr, Ti); the metal concentrations were higher in aqueous extracts as compared to the ethanolic extracts. The extracts were generally richer in calcium (3000-7858 ppm), potassium (13662-53,750 ppm), and sodium (3181-8445 ppm) and hence can be used in food supplements as a source of these metals. Antioxidant potential (DDPH method) of C. citratus ethanolic extract was the highest (74.50 ± 0.66%), whereas it was the lowest (32.22 ± 0.28%) for the aqueous extract of A. indica. Synergistic inhibition of bacteria (Staphylococcus aureus and Escherichia coli) was observed when the aqueous extracts of both the plants were mixed together in certain ratios (v/v). The highest antibacterial potential was exhibited by the pure extract of C. citratus, which was even higher than that of the standard drug (ciprofloxacin). The plant extracts and their mixtures were more active against S. aureus as compared to E. coli. No toxic hemolytic effects were observed for the investigated extracts indicating their safe medicinal uses for human beings.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links