Displaying publications 41 - 60 of 848 in total

Abstract:
Sort:
  1. Noman E, Al-Gheethi A, Radin Mohamed RMS, Talip B, Al-Sahari M, Al-Shaibani M
    J Hazard Mater, 2021 10 05;419:126418.
    PMID: 34171673 DOI: 10.1016/j.jhazmat.2021.126418
    The current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR. The metagenomic analysis is used to explore ARGs in the non-clinical environment. V. parahaemolyticus is among the pathogenic bacteria which are transmitted through sea food causing human acute gastroenteritis due to available thermostable direct hemolysin (tdh), adhesins, TDH related hemolysin (trh). The inactivation of pathogenic bacteria using nanoparticles act by disturbing the cell membrane, interrupting the transport system, DNA and mitochondria damage, and oxidizing the cellular component by reactive oxygen species (ROS). The chloramphenicol, nitrofurans, and nitroimidazole are among the prohibited drugs in fish and fishery product. The utilization of probiotics is the most effective and safe alternative for antibiotics in Prawn aquaculture. This review will ensure public understanding among the readers on how they can decrease the risk of the antimicrobial resistance distribution in the environment.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  2. Rivas-Cáceres RR, Luis Stephano-Hornedo J, Lugo J, Vaca R, Del Aguila P, Yañez-Ocampo G, et al.
    Microb Pathog, 2018 Feb;115:358-362.
    PMID: 29305184 DOI: 10.1016/j.micpath.2017.12.075
    This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  3. Kadir NHA, Murugan N, Khan AA, Sandrasegaran A, Khan AU, Alam M
    Microsc Res Tech, 2024 Mar;87(3):602-615.
    PMID: 38018343 DOI: 10.1002/jemt.24437
    This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 μm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 μg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 μg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  4. Harun AM, Awang H, Noor NFM, Makhatar NM, Yusoff ME, Affandi NDN, et al.
    Biomed Res Int, 2021;2021:6173143.
    PMID: 34859102 DOI: 10.1155/2021/6173143
    BACKGROUND: Potential antibacterial substances, such as titanium dioxide (TiO2), are being extensively studied throughout the research world. A modified hydrothermal nanotitania extraction was shown to inhibit Staphylococcus aureus growth in the laboratory. However, the toxicity effect of the extract on rats is unknown. In this study, we observed the effects of a modified hydrothermal nanotitania extraction on the skin and behavior of Sprague-Dawley rats.

    METHODS: Sprague-Dawley (Rattus norvegicus) rats were used as the experimental animals. The skin around the dorsum of the tested animals was shaved and pasted with 0.1 mg and 0.5 mg of the nanotitania extraction. The color and condition of the pasted area and the behavior of the animals were observed.

    RESULTS: 0.1 mg nanotitania extraction application on the dorsum of the rat produced no skin color changes at day 1, day 3, day 5, or day 7 postapplication. There were no changes in their behavior up to day 7 with no skin rashes or skin scratches seen or fur changes. However, 0.5 mg of nanotitania extraction resulted in redness and less fur regrowth at day 7.

    CONCLUSIONS: A 0.1 mg modified nanotitania extraction was observed to have no effect on the skin of Sprague-Dawley rats.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  5. Adzitey F, Huda N, Ali GR
    Foodborne Pathog Dis, 2012 Jun;9(6):498-505.
    PMID: 22571641 DOI: 10.1089/fpd.2011.1109
    Campylobacter, Salmonella, and Listeria monocytogenes are important bacterial pathogens associated with gastroenteritis. The consumption of poultry meat and their products is considered as a major and leading source of human infection. While surveys of chicken meat and products, and its association with foodborne pathogens are widely available, such information on ducks is scarce. This survey examines the prevalence and antibiotic resistance of Campylobacter, Salmonella and L. monocytogenes isolated from ducks. Data obtained from key surveys are summarized. The observed prevalence of these pathogens and their resistance to various antibiotics varies from one study to the other. The mean prevalence (and range means from individual surveys) are duck 53.0% (0.0-83.3%), duck meat and parts 31.6% (12.5-45.8%), and duck rearing and processing environment 94.4% (92.0-96.7%) for Campylobacter spp. For Salmonella spp., the mean prevalence data are duck 19.9% (3.3-56.9%), duck meat and parts 28.4% (4.4-75.6%), duck egg, shell, and content 17.5% (0-4.17%), and duck rearing and processing environment 32.5% (10.5-82.6%). Studies on the prevalence and antibiotic resistance of L. monocytogenes in ducks are by far very rare compared to Campylobacter and Salmonella, although ducks have been noted to be a potential source for these foodborne pathogens. From our survey, ducks were more frequently contaminated with Campylobacter than Salmonella. Campylobacter and Salmonella spp. also exhibited varying resistance to multiple antibiotics.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  6. Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128230.
    PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230
    Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Ikram M, Mahmood A, Haider A, Naz S, Ul-Hamid A, Nabgan W, et al.
    Int J Biol Macromol, 2021 Aug 31;185:153-164.
    PMID: 34157328 DOI: 10.1016/j.ijbiomac.2021.06.101
    Various concentrations of Mg into fixed amount of cellulose nanocrystals (CNC)-doped ZnO were synthesized using facile chemical precipitation. The aim of present study is to remove dye degradation of methylene blue (MB) and bactericidal behavior with synthesized product. Phase constitution, functional group analysis, optical behavior, elemental composition, morphology and microstructure were examined using XRD, FTIR, UV-Vis spectrophotometer, EDS and HR-TEM. Highly efficient photocatalytic performance was observed in basic medium (98%) relative to neutral (65%), and acidic (83%) was observed upon Mg and CNC co-doping. Significant bactericidal activity of doped ZnO nanoparticles depicted inhibition zones for G -ve and +ve bacteria ranging (2.20 - 4.25 mm) and (5.80-7.25 mm) for E. coli and (1.05 - 2.75 mm) and (2.80 - 4.75 mm) for S. aureus at low and high doses, respectively. Overall, doped nanostructures showed significant (P 
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  8. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  9. Teow SY, Ali SA
    Pak J Pharm Sci, 2016 Nov;29(6):2119-2124.
    PMID: 28375134
    Peptides derived from HIV-1 transmembrane proteins have been extensively studied for antimicrobial activities, and they are known as antimicrobial peptides (AMPs). These AMPs have also been reported to potently combat the drug-resistant microbes. In this study, we demonstrated that peptide #6383 originated from HIV-1 MN strain membrane-spanning domain of gp41 was active (2-log reductions) at 100βg/mL (56.5βM) against methicillin-resistant Staphylococcus aureus (MRSA) in 10% and 50% human plasma-supplemented phosphate buffered saline (PBS). The activity was further enhanced (3-log reductions) in the presence of 5% human serum albumin (HSA) alone. All bactericidal activities were achieved within 6 hours. At 100μg/mL, the peptide showed only 13% toxicity against human erythrocytes. This peptide can serve as an attractive template for a design of a novel peptide antibiotic against drug-resistant bacteria. By sequence-specific engineering or modifications, we anticipated that the bactericidal activity and the reduced toxicity against human erythrocytes will be improved.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  10. Teow SY, Ali SA
    Pak J Pharm Sci, 2017 May;30(3):891-895.
    PMID: 28653935
    This study evaluated the impact of pH (7.4 and 6.5), bovine serum albumin (BSA), and human serum albumin (HSA) on Curcumin activity against 2 reference, 1 clinical, and 10 environmental strains of Staphylococcus aureus (S. aureus). Minimal inhibitory concentrations (MICs) of Curcumin against S. aureus were statistically indifferent (p>0.05) at pH7.4 and pH6.5. Activity of Curcumin against S. aureus was reduced by two folds in the presence of 1.25-5% BSA/HSA.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Teow SY, Ali SA
    Pak J Pharm Sci, 2015 Nov;28(6):2109-14.
    PMID: 26639480
    This study evaluated the synergistic antibacterial activity of Curcumin with 8 different antibiotic groups. Two reference, one clinical and ten environmental strains of Staphylococcus aureus (S. aureus) were tested. Disc diffusion assay with 25 μg/mL Curcumin demonstrated synergism in combination with a majority of tested antibiotics against S. aureus. However, checkerboard micro dilution assay only showed synergism, fractional inhibitory concentration index (FICI) <0.5 in three antibiotics i.e. Gentamicin, Amikacin, and Ciprofloxacin. Other antibiotics showed indifferent interactions but no antagonism was observed. In time-kill curve, appreciable reduction of bacterial cells was also observed in combination therapy (Curcumin + antibiotics) compared to monotherapy (Curcumin or antibiotic(s) alone). The antibiotics with higher synergistic interaction with Curcumin are arranged in a decreasing order: Amikacin > Gentamicin > Ciprofloxacin.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  12. Teow SY, Ali SA
    Pak J Pharm Sci, 2017 Mar;30(2):449-457.
    PMID: 28649069
    Antibacterial effect is one of the major therapeutic activities of plant-derived Curcumin. This work evaluated the effect of serum albumin, human plasma, and whole blood on the in vitro activity of Curcumin against eight clinical bacterial isolates by standard broth microdilution and plate-counting methods. Toxicological effects of Curcumin towards human red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) were also investigated. Curcumin exhibited weak activity against gram-negative bacteria, except Escherichia coli and Shigella flexneri were susceptible and was most active against gram-positive bacteria: Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis. The antibacterial activity was impaired in the presence of bovine serum albumin (BSA), human plasma and whole blood. Curcumin was not toxic to PBMCs and RBCs at 200μg/mL. Furthermore, Curcumin showed synergistic activity in combination with antibiotics: Ciprofloxacin, Gentamicin, Vancomycin and Amikacin against Staphylococcus aureus. This study demonstrated that the interaction of Curcumin with plasma proteins diminishes its in vitro antibacterial activity. Curcumin derivatives with reduced affinity for plasma protein may improve the bioavailability and antibacterial activities.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  13. Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, et al.
    Drug Des Devel Ther, 2018;12:255-269.
    PMID: 29440875 DOI: 10.2147/DDDT.S148912
    Background and aim: The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity.

    Methods: Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles.

    Results and conclusion: The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  14. Qaralleh HN, Abboud MM, Khleifat KM, Tarawneh KA, Althunibat OY
    Pak J Pharm Sci, 2009 Jul;22(3):247-51.
    PMID: 19553168
    This study was carried out to evaluate the antibacterial activity of aqueous and organic extracts of Thymus capitatus L. (Lamiaceae) leaves and stems. Dried ground powder leaves and stems were extracted with water (aqueous extracts), ethanol, dichloromethane and hexane (Soxhlet extracts). The antibacterial activity of these extracts was evaluated against bacteria using disc diffusion method. The result obtained showed that the leaves had stronger antibacterial activity than the stems extracts. The ethanolic extract had the highest yield products and the high antibacterial activity than all other solvents. The results suggest that essential oil as non-polar organic compounds could be the main active compounds in this plant. Therefore the antibacterial activity of leaves ethanol extracts (LEE) was compared with essential oils leaves extracts (LEO) of T. capitatus. The LEO showed greater antibacterial activity than LEE. The LEO showed a broad spectrum of antibacterial activity and the Pseudomonas aeruginosa was the most sensitive bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  15. Gondos AS, Al-Moyed KA, Al-Robasi AB, Al-Shamahy HA, Alyousefi NA
    PLoS One, 2015;10(12):e0144266.
    PMID: 26657128 DOI: 10.1371/journal.pone.0144266
    Urinary tract infection (UTI) is the most common complication following kidney transplantation (KT), which could result in losing the graft. This study aims to identify the prevalence of bacterial UTI among KT recipients in Yemen and to determine the predisposing factors associated with post renal transplantation UTI. A cross sectional study included of 150 patients, who underwent KT was conducted between June 2010 and January 2011. A Morning mid-stream urine specimen was collected for culture and antibiotic susceptibility test from each recipient. Bacterial UTI was found in 50 patients (33.3%). The prevalence among females 40.3% was higher than males 29%. The UTI was higher in the age group between 41-50 years with a percentage of 28% and this result was statistically significant. Predisposing factors as diabetes mellitus, vesicoureteral reflux, neurogenic bladder and polycystic kidney showed significant association. High relative risks were found for polycystic kidney = 13.5 and neurogenic bladder = 13.5. The most prevalent bacteria to cause UTI was Escherichia coli represent 44%, followed by Staphylococcus saprophyticus 34%. Amikacin was the most effective antibiotic against gram-negative isolates while Ciprofloxacin was the most effective antibiotic against Staphylococcus saprophyticus. In conclusion, there is high prevalence of bacterial UTI among KT recipients in Yemen. Diabetes mellitus, vesicoureteral reflux, neurogenic bladder, polycystic kidney and calculi were the main predisposing factors.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Chua EG, Parolia A, Ahlawat P, Pau A, Amalraj FD
    BMC Oral Health, 2014;14:53.
    PMID: 24886335 DOI: 10.1186/1472-6831-14-53
    To investigate the antifungal activity of propolis, triple antibiotic paste (TAP), 2% chlorhexidine gel and calcium hydroxide with propylene glycol on Candida albicans-infected root canal dentinal tubules at two different depths (200 μm and 400 μm) and two time intervals (day 1 and 7).
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Eskandarian N, Ismail Z, Neela V, van Belkum A, Desa MN, Amin Nordin S
    Eur J Clin Microbiol Infect Dis, 2015 Mar;34(3):579-84.
    PMID: 25359580 DOI: 10.1007/s10096-014-2265-x
    A total of 103 group B streptococci (GBS) including 22 invasive, 21 non-invasive, and 60 colonizing isolates were collected in a Malaysian hospital (June 2010-October 2011). Isolates were characterized by conventional and molecular serotyping and analyzed for scpB, lmb, hylB, cylE, bac, bca and rib gene content. Antimicrobial susceptibility to penicillins, macrolides, lincosamides, quinolones and tetracyclines was determined using disk diffusion and the MICs for penicillin were determined by E-test. Molecular serotyping for all eight serotypes (Ia, Ib, II-VII) was in full accordance with conventional serotyping. Overall, taking CS and MS together, serotype VI was the most common capsular type (22.3 %) followed by VII (21.4 %), III (20.4 %), Ia (17.5 %), V (9.7 %), II (7.7 %) and IV (1 %). Susceptibility to beta-lactam antimicrobials was prevalent (100 %). Resistance rates for erythromycin, clindamycin and tetracycline were 23.3 %, 17.5 % and 71.8 %, respectively. PCR-virulence gene screening showed the presence of cylE, lmb, scpB and hylB in almost all the isolates while rib, bca, and bac genes were found in 29.1 %, 14.6 % and 9.7 % of the isolates. Certain genes were significantly associated with specific serotypes, namely, rib with serotypes Ia, II, III and VI; bca and bac with serotypes II and III. Furthermore, serotype Ia was significantly more common among patients with invasive infections (p 
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  18. Qamer S, Romli MH, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, et al.
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443644 DOI: 10.3390/molecules26165057
    The biosynthesis of silver nanoparticles and the antibacterial activities has provided enormous data on populations, geographical areas, and experiments with bio silver nanoparticles' antibacterial operation. Several peer-reviewed publications have discussed various aspects of this subject field over the last generation. However, there is an absence of a detailed and structured framework that can represent the research domain on this topic. This paper attempts to evaluate current articles mainly on the biosynthesis of nanoparticles or antibacterial activities utilizing the scientific methodology of big data analytics. A comprehensive study was done using multiple databases-Medline, Scopus, and Web of Sciences through PRISMA (i.e., Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The keywords used included 'biosynthesis silver nano particles' OR 'silver nanoparticles' OR 'biosynthesis' AND 'antibacterial behavior' OR 'anti-microbial opposition' AND 'systematic analysis,' by using MeSH (Medical Subject Headings) terms, Boolean operator's parenthesis, or truncations as required. Since their effectiveness is dependent on particle size or initial concentration, it necessitates more research. Understanding the field of silver nanoparticle biosynthesis and antibacterial activity in Gulf areas and most Asian countries also necessitates its use of human-generated data. Furthermore, the need for this work has been highlighted by the lack of predictive modeling in this field and a need to combine specific domain expertise. Studies eligible for such a review were determined by certain inclusion and exclusion criteria. This study contributes to the existence of theoretical and analytical studies in this domain. After testing as per inclusion criteria, seven in vitro studies were selected out of 28 studies. Findings reveal that silver nanoparticles have different degrees of antimicrobial activity based on numerous factors. Limitations of the study include studies with low to moderate risks of bias and antimicrobial effects of silver nanoparticles. The study also reveals the possible use of silver nanoparticles as antibacterial irrigants using various methods, including a qualitative evaluation of knowledge and a comprehensive collection and interpretation of scientific studies.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  19. Rasidin RSM, Suhaili Z, Mohamed AFS, Hod R, Neela V, Amin-Nordin S
    Trop Biomed, 2020 Jun 01;37(2):471-481.
    PMID: 33612816
    Nosocomial infection caused by Acinetobacter baumannii is common among immunocompromised patients. Treatment strategy is limited due to rapid resistance development and lack of novel antibiotic. Colistin has been the last line therapy with good in vitro activity against infections caused by multi-drug resistance A. baumannii. However, pharmacological updates are required to support dosing optimisation. This study aimed to determine the time-kill kinetic and resistance development after antibiotic exposure as well as post-antibiotic effect of colistin at different static concentrations in in vitro A. baumannii system. The static in vitro time-kill and post-antibiotic effect experiments were conducted against two clinical isolates as well as one reference isolate ATCC 19606. Time-kill and postantibiotic effect were studied at colistin concentrations ranging from 0.25MIC to 16.0MIC and 0.5MIC to 4.0MIC, respectively. Post-exposure resistance development was examined in time-kill study. Killing activity and post-antibiotic effect were in a concentration-dependent manner. However, delayed killing activity indicates colistin tolerance. Development of resistance after exposure was not detected except for the ATCC 19606 strain. Dosing suggestion based on the observations include administration of supplemental dose 3 MIU at 12 hours after loading dose, administration of maintenance dose 9 MIU in two divided doses and application of extended interval in renal adjustment dose. However, the information is applicable for non-colistin-heteroresistance A. baumannii with colistin MIC < 1.0 mg/L. As for heteroresistance and strain with colistin MIC > 1.0 mg/L, combination therapy would be the more appropriate treatment strategy.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  20. Hussain RM, Abdullah NF, Amom Z
    J Integr Med, 2016 Nov;14(6):456-464.
    PMID: 27854197 DOI: 10.1016/S2095-4964(16)60279-0
    OBJECTIVE: This study investigated the effects of allylpyrocatechol (APC), the major component in ethanolic extract of Piper betle, on key oxidative stress resistance enzymes important for the survival of Staphylococcus aureus, a major pathogen in the human host.

    METHODS: Effects of APC on expressions of genes encoding catalase (katA), superoxide dismutases (SODs), including sodA and sodM, and alkyl hydroperoxide reductase (ahpC) in S· aureus were quantitated by RT-qPCR in reference to gyrA and 16S rRNA. Corresponding activities of the enzymes were also investigated. The Livak analysis was performed for verification of gene-fold expression data. Effects of APC on intracellular and extracellular reactive oxygen species (ROS) levels were determined using the nitroblue tetrazolium (NBT) reduction assay.

    RESULTS: APC-treated S· aureus cells had higher sodA and sodM transcripts at 1.5-fold and 0.7-fold expressions respectively with corresponding increase in total SOD activity of 12.24 U/mL compared to untreated cells, 10.85 U/mL (P<0.05). Expression of ahpC was highest in APC-treated cells with 5.5-fold increased expression compared to untreated cells (P<0.05). Correspondingly, ahpC activity was higher in APC-treated cells at 0.672 (A310nm) compared to untreated cells which was 0.394 (A310nm). In contrast, katA expression was 1.48-fold and 0.33-fold lower respectively relative to gyrA and 16S rRNA. Further, APC-treated cells showed decreased catalase activity of 1.8 ×10-4 (U/L or μmol/(min·L)) compared to untreated cells, which was 4.8 ×10-4 U/L (P<0.05). Absorbance readings (A575nm) for the NBT reduction assay were 0.709 and 0.695 respectively for untreated and treated cells, which indicated the presence of ROS. APC-treated S· aureus cells had lower ROS levels both extracellularly and intracellularly, but larger amounts remained intracellularly compared to extracellular levels with absorbances of 0.457 and 0.137 respectively (P<0.05).

    CONCLUSION: APC induced expressions of both sodA and sodM, resulting in increased total SOD activity in S· aureus. Higher sodA expression indicated stress induced intracellularly involving O2- , presumably leading to higher intracellular pools of H2O2. A concommittant decrease in katA expression and catalase activity possibly induced ahpC expression, which was increased the highest in APC-treated cells. Our findings suggest that in the absence of catalase, cells are propelled to seek an alternate pathway involving ahpC to reduce stress invoked by O2- and H2O2. Although APC reduced levels of ROS, significant amounts eluded its antioxidative action and remained intracellularly, which adds to oxidative stress in treated cells.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links