Displaying publications 41 - 60 of 328 in total

Abstract:
Sort:
  1. Movahed E, Tan GM, Munusamy K, Yeow TC, Tay ST, Wong WF, et al.
    Front Microbiol, 2016;7:360.
    PMID: 27047474 DOI: 10.3389/fmicb.2016.00360
    Cryptococcus neoformans is an opportunistic fungus that causes fatal meningoencephalitis especially in AIDS patients. There is an increasing need for discovery of new anti-cryptococcal drugs due to emergence of resistance cases in recent years. In this study, we aim to elucidate the antifungal effect of triclosan against C. neoformans.
    Matched MeSH terms: Antifungal Agents
  2. Mackeen MM, Ali AM, Lajis NH, Kawazu K, Kikuzaki H, Nakatani N
    Z Naturforsch C J Biosci, 2002 6 18;57(3-4):291-5.
    PMID: 12064729
    Two new garcinia acid derivatives, 2-(butoxycarbonylmethyl)-3-butoxycarbonyl-2-hydroxy-3-propanolide and 1',1"-dibutyl methyl hydroxycitrate, were isolated from the fruits of Garcinia atroviridis guided by TLC bioautography against the fungus Cladosporium herbarum. The structures of these compounds were established by spectral analysis. The former compound represents a unique beta-lactone structure and the latter compound is most likely an artefact of garcinia acid (= hydroxycitric acid). Both compounds showed selective antifungal activity comparable to that of cycloheximide (MID: 0.5 microg/spot) only against C herbarum at the MIDs of 0.4 and 0.8 microg/spot but were inactive against bacteria (Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli), other fungi (Alternaria sp., Fusarium moniliforme and Aspergillus ochraceous) including the yeast Candida albicans.
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/pharmacology; Antifungal Agents/chemistry*
  3. Musa SF, Yeat TS, Kamal LZM, Tabana YM, Ahmed MA, El Ouweini A, et al.
    J Sci Food Agric, 2018 Feb;98(3):1197-1207.
    PMID: 28746729 DOI: 10.1002/jsfa.8573
    BACKGROUND: Green synthesis of silver nanoparticles (AgNPs) has become widely practiced worldwide. In this study, AgNPs were synthesized using a hot-water extract of the edible mushroom Pleurotus sajor-caju. The product, PSC-AgNPs, was characterized by using UV-visible spectra, dynamic light scattering analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometry. To assess its antifungal activity against Candida albicans, gene transcription and protein expression analyses were conducted for CaICL1 and its product, ICL, using real-time quantitative polymerase chain reaction and western blot, respectively.

    RESULTS: PSC-AgNPs with an average particle size of 11.68 nm inhibited the growth of the pathogenic yeast C. albicans. Values for minimum inhibitory concentration and minimum fungicidal concentration were 250 and 500 mg L-1 , respectively. TEM images revealed that the average particle size of PSC-AgNPs was 16.8 nm, with the values for zeta potential and the polydispersity index being -8.54 mV and 0.137, respectively. XRD and FTIR spectra showed PSC-AgNPs to have a face-centered cubic crystalline structure. The polysaccharides and amino acid residues present in P. sajor-caju extract were found to be involved in reducing Ag+ to AgNP. Both CaICL1 transcription and ICL protein expression were found to be suppressed in the cells treated with PSC-AgNPs as compared with the control.

    CONCLUSION: Our PSC-AgNP preparation makes for a promising antifungal agent that can downregulate isocitrate lyase. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Antifungal Agents/metabolism*; Antifungal Agents/pharmacology*; Antifungal Agents/chemistry
  4. Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi K, Hashimoto M, et al.
    J Antibiot (Tokyo), 2017 Jan;70(1):45-51.
    PMID: 27599768 DOI: 10.1038/ja.2016.107
    The novel antifungal agent ASP2397 (Vical's compound ID VL-2397) is produced by the fungal strain MF-347833 that was isolated from Malaysian leaf litter and is identified here as an Acremonium species based on its morphology, physiological properties and 28S ribosomal DNA sequence. Because of its potential importance for producing novel antifungal agents, we determined the taxonomic and biologic properties of MF-347833. We show here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore. However, ASP2397 differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins. To understand the relationship between chemical structure and biological function, we isolated certain ASP2397 derivatives from the culture broth, and we further chemically converted the metal-free form to other derivatives.
    Matched MeSH terms: Antifungal Agents/isolation & purification*; Antifungal Agents/pharmacology*; Antifungal Agents/chemistry
  5. Elliecpearl Jasca J, Annita Seok KY, Suraini L, Chun YA, Julian R, Sano M, et al.
    Biocontrol Sci, 2021;26(4):201-205.
    PMID: 35013016 DOI: 10.4265/bio.26.201
    Pathogenic marine fungi, Lagenidium thermophilum is known causative agent in the crustacean industry. Current disinfection practice in hatchery has risks and negative impacts which prompts suitable substitute to synthetic antifungal agents. Thus, this study was conducted to evaluate the antifungal potential of postbiotic from four potential probiotics towards marine oomycetes, L. thermophilum IPMB 1401. The screening test showed that the Lactobacillus plantarum GS12 and Bacillus cereus GS15 postbiotics were positive for antifungal activity on L. thermophilum IPMB 1401. These two bacterial extracts have minimum inhibitory concentration (MIC) at 50%. The toxicity assay on MIC level of the postbiotic revealed that the cumulative mortality of brine shrimp nauplii exposed to B. cereus postbiotic was significantly lower compared to L. plantarum GS12 postbiotic and formalin. This indicates a high potential of B. cereus GS15 as a prospect for alternative control method for fungal infections in the crustacean culture industry.
    Matched MeSH terms: Antifungal Agents
  6. Chan YS, Cheah YH, Chong PZ, Khor HL, Teh WS, Khoo KS, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):119-127.
    PMID: 29348093
    This study was conducted to investigate the antifungal potential and cytotoxicity of selected medicinal plants from Malaysia. The extracts from the stem of Cissus quadrangularis and the leaves of Asplenium nidus, Pereskia bleo, Persicaria odorata and Sauropus androgynus were assayed against six fungi using p-iodonitrotetrazolium-based on colorimetric broth microdilution method. All the plant extracts were found to be fungicidal against at least one type of fungus. The strongest fungicidal activity (minimum fungicidal concentration=0.16 mg/mL) were exhibited by the hexane extract of C. quadrangularis, the hexane, chloroform, ethanol and methanol extracts of P. bleo, the hexane and ethyl acetate extracts of P. odorata, and the water extract of A. nidus. In terms of cytotoxicity on the African monkey kidney epithelial (Vero) cells, the chloroform extract of P. odorata produced the lowest 50% cytotoxic concentration (100.3 ± 4.2 μ g/mL). In contrast, none of the water extracts from the studied plants caused significant toxicity on the cells. The water extract of A. nidus warrants further investigation since it showed the strongest fungicidal activity and the highest total activity (179.22 L/g) against Issatchenkia orientalis, and did not cause any toxicity to the Vero cells.
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/pharmacology*; Antifungal Agents/toxicity*
  7. Kamada T, Phan CS, Vairappan CS
    J Asian Nat Prod Res, 2019 Mar;21(3):241-247.
    PMID: 29281900 DOI: 10.1080/10286020.2017.1417265
    Two new halogenated nonterpenoids C15-acetogenins, nangallenes A-B (1-2), together with two known halogenated compounds itomanallene A (3) and 2,10-dibromo-3-chloro-α-chamigrene (4), were isolated and identified from the organic extract of the marine red alga Laurencia nangii Masuda collected from the coastal waters in Semporna, Borneo. Their structures were established by means of spectroscopic analysis including IR, high-resolution electrospray ionization mass spectrometry (HRESI-MS), and 1D and 2D NMR techniques. All these metabolites were submitted for the antifungal assay against four species of selected marine fungi. Compounds 1-4 showed potent activity against Haliphthoros sabahensis and Lagenidium thermophilum.
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/pharmacology; Antifungal Agents/chemistry*
  8. Shiekh RA, Malik MA, Al-Thabaiti SA, Wani MY, Nabi A
    ScientificWorldJournal, 2014;2014:404617.
    PMID: 24772018 DOI: 10.1155/2014/404617
    2-Phenyl-N,N'-bis(pyridin-4-ylcarbonyl)butanediamide ligand with a series of transition metal complexes has been synthesized via two routes: microwave irradiation and conventional heating method. Microwave irritation method happened to be the efficient and versatile route for the synthesis of these metal complexes. These complexes were found to have the general composition M(L)Cl2/M(L)(CH3COO)2 (where M = Cu(II), Co(II), Ni(II), and L = ligand). Different physical and spectroscopic techniques were used to investigate the structural features of the synthesized compounds, which supported an octahedral geometry for these complexes. In vitro antifungal activity of the ligand and its metal complexes revealed that the metal complexes are highly active compared to the standard drug. Metal complexes showed enhanced activity compared to the ligand, which is an important step towards the designing of antifungal drug candidates.
    Matched MeSH terms: Antifungal Agents/pharmacology*; Antifungal Agents/chemistry*
  9. Phan CW, Lee GS, Macreadie IG, Malek SN, Pamela D, Sabaratnam V
    Nat Prod Commun, 2013 Dec;8(12):1763-5.
    PMID: 24555294
    Different solvent extracts of Pleurotus giganteus fruiting bodies were tested for antifungal activities against Candida species responsible for human infections. The lipids extracted from the ethyl acetate fraction significantly inhibited the growth of all the Candida species tested. Analysis by GC/MS revealed lipid components such as fatty acids, fatty acid methyl esters, ergosterol, and ergosterol derivatives. The sample with high amounts of fatty acid methyl esters was the most effective antifungal agent. The samples were not cytotoxic to a mammalian cell line, mouse embryonic fibroblasts BALB/c 3T3 clone A31. To our knowledge, this is the first report of antifungal activity of the lipid components of Pleurotus giganteus against Candida species.
    Matched MeSH terms: Antifungal Agents/analysis*; Antifungal Agents/pharmacology
  10. Torey A, Sasidharan S, Yeng C, Latha LY
    Molecules, 2010 May 10;15(5):3411-20.
    PMID: 20657490 DOI: 10.3390/molecules15053411
    Quality control standardizations of the various medicinal plants used in traditional medicine is becoming more important today in view of the commercialization of formulations based on these plants. An attempt at standardization of Cassia spectabilis leaf has been carried out with respect to authenticity, assay and chemical constituent analysis. The authentication involved many parameters, including gross morphology, microscopy of the leaves and functional group analysis by Fourier Transform Infrared (FTIR) spectroscopy. The assay part of standardization involved determination of the minimum inhibitory concentration (MIC) of the extract which could help assess the chemical effects and establish curative values. The MIC of the C. spectabilis leaf extracts was investigated using the Broth Dilution Method. The extracts showed a MIC value of 6.25 mg/mL, independent of the extraction time. The chemical constituent aspect of standardization involves quantification of the main chemical components in C. spectabilis. The GCMS method used for quantification of 2,4-(1H,3H)-pyrimidinedione in the extract was rapid, accurate, precise, linear (R(2) = 0.8685), rugged and robust. Hence this method was suitable for quantification of this component in C. spectabilis. The standardization of C. spectabilis is needed to facilitate marketing of medicinal plants, with a view to promoting the export of valuable Malaysian Traditional Medicinal plants such as C. spectabilis.
    Matched MeSH terms: Antifungal Agents/analysis; Antifungal Agents/standards*
  11. Sangetha S, Zuraini Z, Sasidharan S, Suryani S
    Nihon Ishinkin Gakkai Zasshi, 2008;49(4):299-304.
    PMID: 19001757
    The fungicidal activity of Cassia spectabilis leaf extracts was investigated using the disk diffusion technique and the broth dilution method. The extract showed a favorable antimicrobial activity against Candida albicans with a minimum inhibition concentration(MIC) value of 6.25 mg / ml. Apart from the fungicidal effects, imaging using scanning electron microscopy (SEM) was done to determine the major alterations in the microstructure of the C. albicans. The main abnormalities noted in the SEM studies were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The in vitro time-kill study performed using the leaf extract at 1/2, 1 or 2 times of the MIC significantly inhibited the yeast growth with a noticeable drop in optical density (OD) of yeast culture, thus confirming the fungicidal effect of the extract on C. albicans. In addition, in vivo antifungal activity studies on candidiasis in mice showed a 5-fold decrease in Candida in kidneys and blood samples in the groups of animals treated with the extract (2.5 g / kg body weight). In an acute toxicity study using mice, the acute minimum fatal dose of the extract was greater than 2000 mg / kg, and we found no histopathological changes in macroscopic examination by necropsy of mice treated with extract. We conclude that the extract may be safely used as an anticandidal agent.
    Matched MeSH terms: Antifungal Agents/administration & dosage; Antifungal Agents/pharmacology*
  12. Muhialdin BJ, Hassan Z, Abu Bakar F, Algboory HL, Saari N
    J Food Sci, 2015 May;80(5):M1026-30.
    PMID: 25847317 DOI: 10.1111/1750-3841.12844
    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 °C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage.
    Matched MeSH terms: Antifungal Agents/metabolism; Antifungal Agents/pharmacology*
  13. Rachagan SP, Sivanesaratnam V
    Med J Malaysia, 1986 Mar;41(1):30-2.
    PMID: 3796344
    A preliminary report on the short-term use of Tioconazole for vaginal candidiasis is presented. The cure rate was found to be approximately 90% in mild degrees of the disease, with good patient compliance and minimal side effects. However no conclusion can be drawn for moderate or severe cases of the condition.
    Matched MeSH terms: Antifungal Agents/administration & dosage; Antifungal Agents/therapeutic use*
  14. Hosseini M, Fazelian N, Fakhri A, Kamyab H, Yadav KK, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 May;194:128-134.
    PMID: 30953914 DOI: 10.1016/j.jphotobiol.2019.03.016
    NiS-SiO2 and Cr2S3-TiO2 synthesized by Ultrasound-Microwave method was tested for the photo-degradation of methyl red as azo dye under ultraviolet (UV) light. The structure and morphology of the synthesized materials were examined through scanning electron microscopy, X-ray diffraction and photoelectron spectroscopy, energy-dispersive spectroscopy, dynamic light scattering and the band gap energy differences were determined through diffuse reflectance spectroscopy (DRS). The crystallite size and band gap values of SiO2, TiO2, NiS-SiO2 and Cr2S3-TiO2-1 were obtained from XRD and UV-vis DRS analysis and found insignificant 44.22, 54.11, and 57.11 nm, and 8.9, 3.2, 3.0, 2.7 eV, respectively. The NiS-SiO2 and Cr2S3-TiO2 nanocomposites exhibited good stability and catalytic performance in the azo dye degradation; the composite provides a complete degradation after 50 min under UV irradiation. The effects of different quencher compounds on the Methyl red dye degradation were also investigated. The result for this experiment shows the system without the quencher was highly degradation of Methyl red. The antibacterial influence of the SiO2, TiO2, NiS-SiO2 and Cr2S3-TiO2-1 were studied versus two species bacteria. The antifungal performance of this nanoparticle was analyzed versus two species fungi as the C. albicans and P. funiculosum. Biological data demonstrated that the prepared catalyst has great bactericidal and fungicidal properties.
    Matched MeSH terms: Antifungal Agents/pharmacology*; Antifungal Agents/chemistry*
  15. Neoh CF, Slavin M, Chen SC, Stewart K, Kong DC
    Int J Antimicrob Agents, 2014 Mar;43(3):207-14.
    PMID: 24670423 DOI: 10.1016/j.ijantimicag.2013.08.010
    Candidaemia and invasive candidiasis (IC) complicate modern medical therapy, contributing to high morbidity and mortality. Managing candidiasis is costly, with an additional healthcare expenditure of nearly US$300 million annually. Recent consensus guidelines have suggested the use of newer antifungal agents, such as echinocandins, for the treatment of candidaemia and IC owing to promising clinical outcomes compared with older-generation antifungal agents, but at higher drug acquisition and administration costs. Comprehensive cost-effectiveness data for echinocandins in treating candidaemia and IC remain relatively scant, underlining the need for more studies to incorporate robust economic analyses into clinical decisions. Assessment of the cost efficiencies of these expensive antifungal agents is essential for maximising health outcomes within the constraints of healthcare resources. This review will explore the epidemiology of candidaemia and IC in the context of clinical and economic aspects of the antifungal agents used to treat IC, especially the echinocandins. Standardising the outcome measure, methodology and reporting of results used in economic studies is central to ensure validity and comparability of the findings. Future studies comparing the economic advantages of all available antifungal treatment options and in the context of new diagnostic tools for fungal infections are anticipated.
    Matched MeSH terms: Antifungal Agents/economics; Antifungal Agents/therapeutic use*
  16. Walayat K, Ahmad M, Rasul A, Aslam S, Anjum MN, Sultan S, et al.
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):855-860.
    PMID: 32863262
    The drug resistance phenomenon in microbes is resulting in the ineffectiveness of available drugs to treat the infections. Thus, there is a continued need to discover new molecules to combat the drug resistance phenomenon. Norfloxacin is a fluoroquinolone antibiotic that is used for the treatment of urinary tract infections. In this research work, norfloxacin is structurally modified by hybridizing with a range of substituted acetohydrazidic moieties through a multistep reaction. The first step involves the coupling of norfloxacin 1 with methyl chloroacetate followed by the treatment with hydrazine hydrate to result in corresponding acetohydrazide 3. A range of substituted benzaldehydes were reacted with the acetohydrazide to form the targeted series of norfloxacin derivatives 4a-i. The final compounds were screened for antimicrobial activity. Among the tested compounds, 4c, 4d, 4e and 4f displayed better antifungal activity against F.avenaceum, while compound 4c and 4e were active against F. bubigeum.
    Matched MeSH terms: Antifungal Agents/chemical synthesis; Antifungal Agents/pharmacology
  17. Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, et al.
    Fitoterapia, 2016 Jul;112:116-31.
    PMID: 27259370 DOI: 10.1016/j.fitote.2016.05.016
    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal.
    Matched MeSH terms: Antifungal Agents/pharmacology*; Antifungal Agents/chemistry
  18. Yuen KH, Peh KK
    J Chromatogr B Biomed Sci Appl, 1998 Sep 18;715(2):436-40.
    PMID: 9792531
    A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of ketoconazole in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile. The mobile phase comprised 0.05 M disodium hydrogen orthophosphate and acetonitrile (50:50, v/v) adjusted to pH 6. Analysis was run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 260 nm and an emission wavelength of 375 nm. The method is specific and sensitive with a quantification limit of approximately 60 ng/ml and a detection limit of 40 ng/ml at a signal-to-noise ratio of 3:1. Mean absolute recovery value was about 105%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 14%. The calibration curve was linear over a concentration range of 62.5-8000 ng/ml.
    Matched MeSH terms: Antifungal Agents/blood*; Antifungal Agents/pharmacokinetics
  19. Tani K, Kamada T, Phan CS, Vairappan CS
    Nat Prod Res, 2019 Dec;33(23):3343-3349.
    PMID: 29772929 DOI: 10.1080/14786419.2018.1475387
    Three new cembrane diterpenes, nephthecrassocolides A-B (1-2) and 6-acetoxy nephthenol acetate (3) along with three known compounds, 6-acetoxy-7,8-epoxy nephthenol acetate (4), epoxy nephthenol acetate (5) and nephthenol (6) were isolated from one population of Nephthea sp. Their structures were elucidated based on spectroscopic data analysis and the antifungal activities of compounds 1-6 were evaluated.
    Matched MeSH terms: Antifungal Agents/pharmacology*; Antifungal Agents/chemistry*
  20. Saito H, Tamrin ML
    Biocontrol Sci, 2019;24(2):73-80.
    PMID: 31204358 DOI: 10.4265/bio.24.73
    Fungal infection mostly caused by marine oomycetes had hindered crustacean production thus searching for natural and safe treatment is currently needed. Thus, this study was conducted to investigate the antimycotic effect of different seaweed extract against marine oomycetes (Lagenidium spp. and Haliphthoros spp) . Two seaweeds species (Eucheuma cottonii and Caulerpa lentillifera) were extracted using ethanol, methanol and water. Each extracts was tested on four fungi strains of marine oomycetes species for minimum inhibitory concentration (MIC) and fungicidal activities. C. lentillifera ethanol extract showed the highest antifungal effect where it can inhibit three from four fungal strains. Meanwhile, E. cottonii ethanol extract has lowest MIC (500 ppm) and inhibit L. thermophilum IPMB 1401 and H. sabahensis IPMB 1402 hyphal growths. Antimycotic effect on zoospores production shows reduction in production after 12 h immersion for three marine oomycetes species. Seaweed extracts toxicity on Artemia sp. showed approximately 5% mortality at 12 h immersion. It is suggested that 12 h immersion of seaweed extract is a suitable treatment for marine oomycetes in aquaculture. This study does not only show potential alternative control method for crab larvae health management, it may also contribute to the sustainable development and food security of aquaculture industry.
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links