Displaying publications 41 - 60 of 261 in total

Abstract:
Sort:
  1. Ismail A, Ahmad SA, Che Soh A, Hassan MK, Harith HH
    Data Brief, 2020 Oct;32:106268.
    PMID: 32984464 DOI: 10.1016/j.dib.2020.106268
    A fully labelled image dataset serves as a valuable tool for reproducible research inquiries and data processing in various computational areas, such as machine learning, computer vision, artificial intelligence and deep learning. Today's research on ageing is intended to increase awareness on research results and their applications to assist public and private sectors in selecting the right equipments for the elderlies. Many researches related to development of support devices and care equipment had been done to improve the elderly's quality of life. Indoor object detection and classification for autonomous systems require large annotated indoor images for training and testing of smart computer vision applications. This dataset entitled MYNursingHome is an image dataset for commonly used objects surrounding the elderlies in their home cares. Researchers may use this data to build up a recognition aid for the elderlies. This dataset was collected from several nursing homes in Malaysia comprises 37,500 digital images from 25 different indoor object categories including basket bin, bed, bench, cabinet and others.
    Matched MeSH terms: Artificial Intelligence
  2. Alauddin MS, Baharuddin AS, Mohd Ghazali MI
    Healthcare (Basel), 2021 Jan 25;9(2).
    PMID: 33503807 DOI: 10.3390/healthcare9020118
    Dentistry is a part of the field of medicine which is advocated in this digital revolution. The increasing trend in dentistry digitalization has led to the advancement in computer-derived data processing and manufacturing. This progress has been exponentially supported by the Internet of medical things (IoMT), big data and analytical algorithm, internet and communication technologies (ICT) including digital social media, augmented and virtual reality (AR and VR), and artificial intelligence (AI). The interplay between these sophisticated digital aspects has dramatically changed the healthcare and biomedical sectors, especially for dentistry. This myriad of applications of technologies will not only be able to streamline oral health care, facilitate workflow, increase oral health at a fraction of the current conventional cost, relieve dentist and dental auxiliary staff from routine and laborious tasks, but also ignite participatory in personalized oral health care. This narrative article review highlights recent dentistry digitalization encompassing technological advancement, limitations, challenges, and conceptual theoretical modern approaches in oral health prevention and care, particularly in ensuring the quality, efficiency, and strategic dental care in the modern era of dentistry.
    Matched MeSH terms: Artificial Intelligence
  3. Muntari B, Amid A, Mel M, Jami MS, Salleh HM
    AMB Express, 2012;2:12.
    PMID: 22336426 DOI: 10.1186/2191-0855-2-12
    Bromelain, a cysteine protease with various therapeutic and industrial applications, was expressed in Escherichia coli, BL21-AI clone, under different cultivation conditions (post-induction temperature, L-arabinose concentration and post-induction period). The optimized conditions by response surface methodology using face centered central composite design were 0.2% (w/v) L-arabinose, 8 hr and 25°C. The analysis of variance coupled with larger value of R2 (0.989) showed that the quadratic model used for the prediction was highly significant (p < 0.05). Under the optimized conditions, the model produced bromelain activity of 9.2 U/mg while validation experiments gave bromelain activity of 9.6 ± 0.02 U/mg at 0.15% (w/v) L-arabinose, 8 hr and 27°C. This study had innovatively developed cultivation conditions for better production of recombinant bromelain in shake flask culture.
    Matched MeSH terms: Artificial Intelligence
  4. Zheyuan C, Rahman MA, Tao H, Liu Y, Pengxuan D, Yaseen ZM
    Work, 2021;68(3):825-834.
    PMID: 33612525 DOI: 10.3233/WOR-203416
    BACKGROUND: The increasing use of robotics in the work of co-workers poses some new problems in terms of occupational safety and health. In the workplace, industrial robots are being used increasingly. During operations such as repairs, unmanageable, adjustment, and set-up, robots can cause serious and fatal injuries to workers. Collaborative robotics recently plays a rising role in the manufacturing filed, warehouses, mining agriculture, and much more in modern industrial environments. This development advances with many benefits, like higher efficiency, increased productivity, and new challenges like new hazards and risks from the elimination of human and robotic barriers.

    OBJECTIVES: In this paper, the Advanced Human-Robot Collaboration Model (AHRCM) approach is to enhance the risk assessment and to make the workplace involving security robots. The robots use perception cameras and generate scene diagrams for semantic depictions of their environment. Furthermore, Artificial Intelligence (AI) and Information and Communication Technology (ICT) have utilized to develop a highly protected security robot based risk management system in the workplace.

    RESULTS: The experimental results show that the proposed AHRCM method achieves high performance in human-robot mutual adaption and reduce the risk.

    CONCLUSION: Through an experiment in the field of human subjects, demonstrated that policies based on the proposed model improved the efficiency of the human-robot team significantly compared with policies assuming complete human-robot adaptation.

    Matched MeSH terms: Artificial Intelligence
  5. Gopinath SCB, Ismail ZH, Shapiai MI, Sobran NMM
    PMID: 33835514 DOI: 10.1002/bab.2164
    Artificial intelligence of things (AIoT) has become a potential tool for use in a wide range of fields, and its use is expanding in interdisciplinary sciences. On the other hand, in a clinical scenario, human blood-clotting disease (Royal disease) detection has been considered an urgent issue that has to be solved. This study uses AIoT with deep long short-term memory networks for biosensing application and analyzes the potent clinical target, human blood clotting factor IX, by its aptamer/antibody as the probe on the microscaled fingers and gaps of the interdigitated electrode. The earlier results by the current-volt measurements have shown the changes in the surface modification. The limit of detection (LOD) was noticed as 1 pM with the antibody as the probe, whereas the aptamer behaved better with the LOD at 100 fM. The time-series predictions from the AIoT application supported the obtained results with the laboratory analyses using both probes. This application clearly supports the results obtained from the interdigitated electrode sensor as aptamer to be the better option for analyzing the blood clotting defects. The current study supports a great implementation of AIoT in sensing application and can be followed for other clinical biomarkers.
    Matched MeSH terms: Artificial Intelligence
  6. Mohamad Marzuki MF, Yaacob NA, Bin Yaacob NM, Abu Hassan MR, Ahmad SB
    JMIR Hum Factors, 2019 Apr 16;6(2):e12103.
    PMID: 30990454 DOI: 10.2196/12103
    BACKGROUND: Participation in colorectal cancer screening is still low among Malaysians despite the increasing trend of incidence, with more than half of the new cases being detected in the advanced stages. Knowledge improvement might increase screening participation and thus improve the chances of disease detection. With the advancement of communication technology, people nowadays prefer to read from their mobile phone using a Web browser or mobile apps compared with the traditional printed material. Therefore, health education and promotion should adapt this behavior change in educating the community.

    OBJECTIVE: This study aimed to document the process of designing and developing a mobile app for community education on colorectal cancer and assess the usability of the prototype.

    METHODS: The nominal group technique (NGT) was used for the content development of the mobile app. NGT involving community educationists and clinicians combined with community representatives as the target users identified relevant health information and communication strategies including features for a user-friendly mobile app. The prototype was developed using framework Ionic 1, based on the Apache Cordova and Angular JS (Google). It was published in the Google Play store. In total, 50 mobile phone users aged 50 years and above and who had never been diagnosed with any type of cancer were invited to download and use the app. They were asked to assess the usability of the app using the validated Malay version of System Usability Scale Questionnaire for the Assessment of Mobile Apps questionnaire. The One-sample t test was used to assess the usability score with a cut-off value of 68 for the usable mobile app.

    RESULTS: The Colorectal Cancer Awareness Application (ColorApp) was successfully developed in the local Malay language. The NGT discussion had suggested 6 main menus in the ColorApp prototype, which are Introduction, Sign and Symptoms, Risk Factors, Preventive Measures, Colorectal Cancer Screening Program, and immunochemical fecal occult blood test kit. A total of 2 additional artificial intelligence properties menus were added to allow user-ColorApp interaction: Analyze Your Status and ColorApp Calculator. The prototype has been published in the Google Play store. The mean usability score was 72 (SD 11.52), which indicates that ColorApp is a usable mobile app, and it can be used as a tool for community education on colorectal cancer.

    CONCLUSIONS: ColorApp mobile app can be used as a user-friendly tool for community education on colorectal cancer.

    Matched MeSH terms: Artificial Intelligence
  7. Wang N, Rahman MNBA, Daud MAKBM
    Front Psychol, 2020;11:593063.
    PMID: 33584429 DOI: 10.3389/fpsyg.2020.593063
    In order to improve early childhood physical education, in this study, the talent cultivation mechanism for undergraduates was explored under the "full-practice" concept, oriented by preschooler mental health. First, from the perspective of preschooler psychology, the mechanisms of ability training and talent cultivation for undergraduates majoring in early childhood education were explored under the "full-practice" concept. Considering that the physical, psychological, and intellectual development of preschoolers shall follow the rules of physical education, and current early childhood education mainly focuses on intelligence education in China, early childhood physical education was analyzed further in this study. By investigating the undergraduate majors of early childhood education in Henan University, this study first summarized the current problems in early childhood education systems in universities. Secondly, combined with the form of physical education in kindergartens, strategies for talent cultivation and curriculum setting of early childhood physical education majors in colleges and universities were proposed. Finally, from the perspective of innovation and diversification of training forms, the cultivation of early childhood educators' physical education ability was analyzed at multiple levels and multiple objectives, and the integrated training system of early childhood education talents was constructed. The results show that, among all the courses for early childhood education major, compulsory courses account for 81.2% and optional courses account for 18.8%. In addition, a survey on undergraduates' attitudes toward the curriculum of their major demonstrates that 81.2% of the undergraduates thought that the range and content of practical courses should be increased, indicating that undergraduates majoring in early childhood education are dissatisfied with the current curriculum system, and they have an increased demand for practical courses. Correspondingly, it is vital to build and improve on the early childhood physical education. In terms of its talent cultivation, the "full-practice" concept helps combine theory with practice to improve the effectiveness of education and teaching, pushing forward the reform of the education system. Meanwhile, data- and intelligence-oriented teaching will become the new direction of modern sports development, as well as an important link for tracking and monitoring children's sports teaching in China. Through the continuous introduction of wearable artificial intelligence (AI) products, real-time monitoring of children's physical conditions can be realized, which helps improve the effectiveness of early childhood physical education.
    Matched MeSH terms: Artificial Intelligence
  8. Dimitri P, Fernandez-Luque L, Banerjee I, Bergadá I, Calliari LE, Dahlgren J, et al.
    J Med Internet Res, 2021 05 20;23(5):e27446.
    PMID: 34014174 DOI: 10.2196/27446
    BACKGROUND: The use of technology to support health and health care has grown rapidly in the last decade across all ages and medical specialties. Newly developed eHealth tools are being implemented in long-term management of growth failure in children, a low prevalence pediatric endocrine disorder.

    OBJECTIVE: Our objective was to create a framework that can guide future implementation and research on the use of eHealth tools to support patients with growth disorders who require growth hormone therapy.

    METHODS: A total of 12 pediatric endocrinologists with experience in eHealth, from a wide geographical distribution, participated in a series of online discussions. We summarized the discussions of 3 workshops, conducted during 2020, on the use of eHealth in the management of growth disorders, which were structured to provide insights on existing challenges, opportunities, and solutions for the implementation of eHealth tools across the patient journey, from referral to the end of pediatric therapy.

    RESULTS: A total of 815 responses were collected from 2 questionnaire-based activities covering referral and diagnosis of growth disorders, and subsequent growth hormone therapy stages of the patient pathway, relating to physicians, nurses, and patients, parents, or caregivers. We mapped the feedback from those discussions into a framework that we developed as a guide to integration of eHealth tools across the patient journey. Responses focused on improved clinical management, such as growth monitoring and automation of referral for early detection of growth disorders, which could trigger rapid evaluation and diagnosis. Patient support included the use of eHealth for enhanced patient and caregiver communication, better access to educational opportunities, and enhanced medical and psychological support during growth hormone therapy management. Given the potential availability of patient data from connected devices, artificial intelligence can be used to predict adherence and personalize patient support. Providing evidence to demonstrate the value and utility of eHealth tools will ensure that these tools are widely accepted, trusted, and used in clinical practice, but implementation issues (eg, adaptation to specific clinical settings) must be addressed.

    CONCLUSIONS: The use of eHealth in growth hormone therapy has major potential to improve the management of growth disorders along the patient journey. Combining objective clinical information and patient adherence data is vital in supporting decision-making and the development of new eHealth tools. Involvement of clinicians and patients in the process of integrating such technologies into clinical practice is essential for implementation and developing evidence that eHealth tools can provide value across the patient pathway.

    Matched MeSH terms: Artificial Intelligence
  9. Chang SW, Merican AFMA, Rosnah Zain, Kareem SA
    Sains Malaysiana, 2014;43:567-573.
    There are very few prognostic studies that combine both clinicopathologic and genomic data. Most of the studies use only clinicopathologic factors without taking into consideration the tumour biology and molecular information, while some studies use genomic markers or microarray information only without the clinicopathologic parameters. Thus, these studies may not be able to prognoses a patient effectively. Previous studies have shown that prognosis results are more accurate when using both clinicopathologic and genomic data. The objectives of this research were to apply hybrid artificial intelligent techniques in the prognosis of oral cancer based on the correlation of clinicopathologic and genomic markers and to prove that the prognosis is better with both markers. The proposed hybrid model consisting of two stages, where stage one with ReliefF-GA feature selection method to find an optimal feature of subset and stage two with ANFIS classification to classify either the patients alive or dead after certain years of diagnosis. The proposed prognostic model was experimented on two groups of oral cancer dataset collected locally here in Malaysia, Group 1 with clinicopathologic markers only and Group 2 with both clinicopathologic and genomic markers. The results proved that the proposed model with optimum features selected is more accurate with the use of both clinicopathologic and genomic markers and outperformed the other methods of artificial neural network, support vector machine and logistic regression. This prognostic model is feasible to aid the clinicians in the decision support stage and to identify the high risk markers to better predict the survival rate for each oral cancer patient.
    Matched MeSH terms: Artificial Intelligence
  10. Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD
    Sci Total Environ, 2023 Jan 15;856(Pt 2):159283.
    PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283
    Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
    Matched MeSH terms: Artificial Intelligence
  11. Allawi MF, Jaafar O, Mohamad Hamzah F, Abdullah SMS, El-Shafie A
    Environ Sci Pollut Res Int, 2018 May;25(14):13446-13469.
    PMID: 29616480 DOI: 10.1007/s11356-018-1867-8
    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.
    Matched MeSH terms: Artificial Intelligence
  12. Song Z, Zhang W, Jiang Q, Deng L, Du L, Mou W, et al.
    Int J Surg, 2023 Dec 01;109(12):3848-3860.
    PMID: 37988414 DOI: 10.1097/JS9.0000000000000862
    BACKGROUND: The early detection of high-grade prostate cancer (HGPCa) is of great importance. However, the current detection strategies result in a high rate of negative biopsies and high medical costs. In this study, the authors aimed to establish an Asian Prostate Cancer Artificial intelligence (APCA) score with no extra cost other than routine health check-ups to predict the risk of HGPCa.

    PATIENTS AND METHODS: A total of 7476 patients with routine health check-up data who underwent prostate biopsies from January 2008 to December 2021 in eight referral centres in Asia were screened. After data pre-processing and cleaning, 5037 patients and 117 features were analyzed. Seven AI-based algorithms were tested for feature selection and seven AI-based algorithms were tested for classification, with the best combination applied for model construction. The APAC score was established in the CH cohort and validated in a multi-centre cohort and in each validation cohort to evaluate its generalizability in different Asian regions. The performance of the models was evaluated using area under the receiver operating characteristic curve (ROC), calibration plot, and decision curve analyses.

    RESULTS: Eighteen features were involved in the APCA score predicting HGPCa, with some of these markers not previously used in prostate cancer diagnosis. The area under the curve (AUC) was 0.76 (95% CI:0.74-0.78) in the multi-centre validation cohort and the increment of AUC (APCA vs. PSA) was 0.16 (95% CI:0.13-0.20). The calibration plots yielded a high degree of coherence and the decision curve analysis yielded a higher net clinical benefit. Applying the APCA score could reduce unnecessary biopsies by 20.2% and 38.4%, at the risk of missing 5.0% and 10.0% of HGPCa cases in the multi-centre validation cohort, respectively.

    CONCLUSIONS: The APCA score based on routine health check-ups could reduce unnecessary prostate biopsies without additional examinations in Asian populations. Further prospective population-based studies are warranted to confirm these results.

    Matched MeSH terms: Artificial Intelligence
  13. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al.
    Med J Malaysia, 2024 Jan;79(1):102-110.
    PMID: 38287765
    INTRODUCTION: Magnetic resonance spectroscopy (MRS) has an emerging role as a neuroimaging tool for the detection of biomarkers of Alzheimer's disease (AD). To date, MRS has been established as one of the diagnostic tools for various diseases such as breast cancer and fatty liver, as well as brain tumours. However, its utility in neurodegenerative diseases is still in the experimental stages. The potential role of the modality has not been fully explored, as there is diverse information regarding the aberrations in the brain metabolites caused by normal ageing versus neurodegenerative disorders.

    MATERIALS AND METHODS: A literature search was carried out to gather eligible studies from the following widely sourced electronic databases such as Scopus, PubMed and Google Scholar using the combination of the following keywords: AD, MRS, brain metabolites, deep learning (DL), machine learning (ML) and artificial intelligence (AI); having the aim of taking the readers through the advancements in the usage of MRS analysis and related AI applications for the detection of AD.

    RESULTS: We elaborate on the MRS data acquisition, processing, analysis, and interpretation techniques. Recommendation is made for MRS parameters that can obtain the best quality spectrum for fingerprinting the brain metabolomics composition in AD. Furthermore, we summarise ML and DL techniques that have been utilised to estimate the uncertainty in the machine-predicted metabolite content, as well as streamline the process of displaying results of metabolites derangement that occurs as part of ageing.

    CONCLUSION: MRS has a role as a non-invasive tool for the detection of brain metabolite biomarkers that indicate brain metabolic health, which can be integral in the management of AD.

    Matched MeSH terms: Artificial Intelligence
  14. Wang W, Zhao X, Jia Y, Xu J
    PLoS One, 2024;19(2):e0297578.
    PMID: 38319912 DOI: 10.1371/journal.pone.0297578
    The objectives are to improve the diagnostic efficiency and accuracy of epidemic pulmonary infectious diseases and to study the application of artificial intelligence (AI) in pulmonary infectious disease diagnosis and public health management. The computer tomography (CT) images of 200 patients with pulmonary infectious disease are collected and input into the AI-assisted diagnosis software based on the deep learning (DL) model, "UAI, pulmonary infectious disease intelligent auxiliary analysis system", for lesion detection. By analyzing the principles of convolutional neural networks (CNN) in deep learning (DL), the study selects the AlexNet model for the recognition and classification of pulmonary infection CT images. The software automatically detects the pneumonia lesions, marks them in batches, and calculates the lesion volume. The result shows that the CT manifestations of the patients are mainly involved in multiple lobes and density, the most common shadow is the ground-glass opacity. The detection rate of the manual method is 95.30%, the misdetection rate is 0.20% and missed diagnosis rate is 4.50%; the detection rate of the DL-based AI-assisted lesion method is 99.76%, the misdetection rate is 0.08%, and the missed diagnosis rate is 0.08%. Therefore, the proposed model can effectively identify pulmonary infectious disease lesions and provide relevant data information to objectively diagnose pulmonary infectious disease and manage public health.
    Matched MeSH terms: Artificial Intelligence
  15. Sachithanandan A, Lockman H, Azman RR, Tho LM, Ban EZ, Ramon V
    Med J Malaysia, 2024 Jan;79(1):9-14.
    PMID: 38287751
    INTRODUCTION: The poor prognosis of lung cancer has been largely attributed to the fact that most patients present with advanced stage disease. Although low dose computed tomography (LDCT) is presently considered the optimal imaging modality for lung cancer screening, its use has been hampered by cost and accessibility. One possible approach to facilitate lung cancer screening is to implement a risk-stratification step with chest radiography, given its ease of access and affordability. Furthermore, implementation of artificial-intelligence (AI) in chest radiography is expected to improve the detection of indeterminate pulmonary nodules, which may represent early lung cancer.

    MATERIALS AND METHODS: This consensus statement was formulated by a panel of five experts of primary care and specialist doctors. A lung cancer screening algorithm was proposed for implementation locally.

    RESULTS: In an earlier pilot project collaboration, AI-assisted chest radiography had been incorporated into lung cancer screening in the community. Preliminary experience in the pilot project suggests that the system is easy to use, affordable and scalable. Drawing from experience with the pilot project, a standardised lung cancer screening algorithm using AI in Malaysia was proposed. Requirements for such a screening programme, expected outcomes and limitations of AI-assisted chest radiography were also discussed.

    CONCLUSION: The combined strategy of AI-assisted chest radiography and complementary LDCT imaging has great potential in detecting early-stage lung cancer in a timely manner, and irrespective of risk status. The proposed screening algorithm provides a guide for clinicians in Malaysia to participate in screening efforts.

    Matched MeSH terms: Artificial Intelligence
  16. Maruthapillai V, Murugappan M
    PLoS One, 2016;11(2):e0149003.
    PMID: 26859884 DOI: 10.1371/journal.pone.0149003
    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.
    Matched MeSH terms: Artificial Intelligence
  17. Khataee HR, Ibrahim MY
    IET Nanobiotechnol, 2012 Sep;6(3):87-92.
    PMID: 22894532 DOI: 10.1049/iet-nbt.2011.0062
    Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.
    Matched MeSH terms: Artificial Intelligence
  18. Jazayeri SMHM, Jamshidnezhad A
    Malays J Med Sci, 2019 Jan;26(1):5-14.
    PMID: 30914890 DOI: 10.21315/mjms2019.26.1.2
    The development of intelligent software in recent years has grown rapidly. Mobile health has become a field of interest as a tool for childcare, especially as a means for parents of children with diverse diseases and a resource to promote their health conditions. Current systematic review was conducted to survey the functionalities of available applications on the mobile platform to support pediatrics intelligent diagnosis and children healthcare. Results which met the inclusion criteria (such as patient monitoring, decision support, diagnosis support) were obtained, assessed and organised into a checklist. In this study, 379 potential apps were identified using the search feature in Apple App Store and Google Play Store. After careful consideration of the selected apps, only three (Google Play Store) and one (iTunes Store), fulfilled all the general inclusion criteria and special criteria, such as intelligence tools. The results showed that Artificial Intelligence (AI) was used minimally in diagnostic apps due to a limited amount of mobile hardware and software, such as the reliable programming of intelligent algorithms.
    Matched MeSH terms: Artificial Intelligence
  19. Abdulameer MH, Sheikh Abdullah SN, Othman ZA
    ScientificWorldJournal, 2014;2014:879031.
    PMID: 25165748 DOI: 10.1155/2014/879031
    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
    Matched MeSH terms: Artificial Intelligence*
  20. Nasir MK, Md Noor R, Kalam MA, Masum BM
    ScientificWorldJournal, 2014;2014:836375.
    PMID: 25032239 DOI: 10.1155/2014/836375
    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.
    Matched MeSH terms: Artificial Intelligence*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links