Displaying publications 41 - 60 of 234 in total

Abstract:
Sort:
  1. Jamalis J, Yusof FSM, Chander S, Wahab RA, P Bhagwat D, Sankaranarayanan M, et al.
    PMID: 31241020 DOI: 10.2174/1871523018666190625170802
    Psoralen or furocoumarin is a linear three ring heterocyclic compound. Psoralens are planar, tricyclic compounds, consisting of a furan ring fused to a coumarin moiety. Psoralen has been known for a wide spectrum of biological activities, spanning from cytotoxic, photosensitizing, insecticidal, antibacterial to antifungal effect. Thus, several structural changes were introduced to explore the role of specific positions with respect to the biological activity. Convenient approaches utilized for the synthesis of psoralen skeleton can be categorized into two parts: (i) the preparation of the tricyclic ring system from resorcinol, (ii) the exocyclic modification of the intact ring system. Furthermore, although psoralens have been used in diverse ways, we mainly focus in this work on their clinical utility for the treatment of psioraisis, vitiligo and skin-related disorder.
    Matched MeSH terms: Biological Availability
  2. Qian YS, Ramamurthy S, Candasamy M, Shadab M, Kumar RH, Meka VS
    Curr Pharm Biotechnol, 2016;17(6):549-55.
    PMID: 26813303
    CONTEXT: Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability.

    METHODS: A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats.

    RESULTS AND DISCUSSION: The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (P<0.05) increased in Cmax and AUC(0-∞) following oral administration and a significant improvement in absolute bioavailability (38.17%) compared with 13.03% for pure kaempferol.

    CONCLUSION: These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

    Matched MeSH terms: Biological Availability
  3. Fung WY, Liong MT, Yuen KH
    J Pharm Pharmacol, 2016 Feb;68(2):159-69.
    PMID: 26730452 DOI: 10.1111/jphp.12502
    OBJECTIVES: This study aimed to prepare Coenzyme Q10 (CoQ10) microparticles using electrospraying technology, and evaluate the in-vitro properties and in-vivo oral bioavailability.
    KEY FINDINGS: Electrospraying was successfully used to prepare CoQ10 to enhance its solubility and dissolution properties. In-vitro evaluation of the electrosprayed microparticles showed bioavailability-enhancing properties such as reduced crystallinity and particle size. The formulation was evaluated using dissolution study and in-vivo oral bioavailability using rat model. The dissolution study revealed enhanced dissolution properties of electrosprayed microparticles compared with physical mixture and raw material. The absorption profiles showed increasing mean plasma levels CoQ10 in the following order: raw material < physical mixture < electrosprayed microparticles.
    CONCLUSION: Based on the findings in this study, electrospraying is a highly prospective technology to produce functional nano- and micro-structures as delivery vehicles for drugs with poor oral bioavailability due to rate-limiting solubility.
    Matched MeSH terms: Biological Availability
  4. Hamidi EN, Hajeb P, Selamat J, Abdull Razis AF
    Asian Pac J Cancer Prev, 2016;17(1):15-23.
    PMID: 26838201
    Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.
    Matched MeSH terms: Biological Availability
  5. Low BS, Teh CH, Yuen KH, Chan KL
    Nat Prod Commun, 2011 Mar;6(3):337-41.
    PMID: 21485270
    A simple validated LC-UV method for the phytochemical analysis of four bioactive quassinoids, 13alpha(21)-epoxyeurycomanone (EP), eurycomanone (EN), 13alpha,21-dihydroeurycomanone (ED) and eurycomanol (EL) in rat plasma following oral (200 mg/kg) and intravenous administration (10 mg/kg) of a standardized extract Fr 2 of Eurycoma longifolia Jack was developed for pharmacokinetic and bioavailability studies. The extract Fr 2 contained 4.0%, 18.5%, 0.7% and 9.5% of EP, EN, ED and EL, respectively. Following intravenous administration, EP displayed a relatively longer biological half-life (t1/2 = 0.75 +/- 0.25 h) due primarily to its lower elimination rate constant (k(e)) of 0.84 +/- 0.26 h(-1)) when compared with the t1/2 of 0.35 +/- 0.04 h and k(e) of 2.14 +/- 0.27 h(-1), respectively of EN. Following oral administration, EP showed a higher C(max) of 1.61 +/- 0.41 microg/mL over that of EN (C(max) = 0.53 +/- 0.10 microg/mL). The absolute bioavailability of EP was 9.5-fold higher than that of EN, not because of chemical degradation since both quassinoids were stable at the simulated gastric pH of 1. Instead, the higher log K(ow) value of EP (-0.43) contributed to greater membrane permeability over that of EN (log K(ow) = -1.46) at pH 1. In contrast, EL, being in higher concentration in the extract than EP, was not detected in the plasma after oral administration because of substantial degradation by the gastric juices after 2 h. Similarly, ED, being unstable at the acidic pH and together with its low concentration in Fr 2, was not detectable in the rat plasma. In conclusion, upon oral administration of the bioactive standardized extract Fr 2, EP and EN may be the only quassinoids contributing to the overall antimalarial activity; this is worthy of further investigation.
    Matched MeSH terms: Biological Availability
  6. Patil J, Pawde DM, Bhattacharya S, Srivastava S
    AAPS PharmSciTech, 2024 Apr 25;25(5):91.
    PMID: 38664316 DOI: 10.1208/s12249-024-02813-x
    Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.
    Matched MeSH terms: Biological Availability
  7. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E
    Int J Nanomedicine, 2020;15:9961-9974.
    PMID: 33324057 DOI: 10.2147/IJN.S276355
    Vitamin E belongs to the family of lipid-soluble vitamins and can be divided into two groups, tocopherols and tocotrienols, with four isomers (alpha, beta, gamma and delta). Although vitamin E is widely known as a potent antioxidant, studies have also revealed that vitamin E possesses anti-inflammatory properties. These crucial properties of vitamin E are beneficial in various aspects of health, especially in neuroprotection and cardiovascular, skin and bone health. However, the poor bioavailability of vitamin E, especially tocotrienols, remains a great limitation for clinical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. This review focuses on the pharmacological properties and pharmacokinetics of vitamin E and current advances in vitamin E nanoformulations for future clinical applications. The limitations and future recommendations are also discussed in this review.
    Matched MeSH terms: Biological Availability
  8. Navaratnam V, Mansor SM, Sit NW, Grace J, Li Q, Olliaro P
    Clin Pharmacokinet, 2000 Oct;39(4):255-70.
    PMID: 11069212
    Various compounds of the artemisinin family are currently used for the treatment of patients with malaria worldwide. They are characterised by a short half-life and feature the most rapidly acting antimalarial drugs to date. They are increasingly being used, often in combination with other drugs, although our knowledge of their main pharmacological features (including their absorption, distribution, metabolism and excretion) is still incomplete. Such data are particularly important in the case of combinations. Artemisinin derivatives are converted primarily, but to different extents, to the bioactive metabolite artenimol after either parenteral or gastrointestinal administration. The rate of conversion is lowest for artelinic acid (designed to protect the molecule against metabolism) and highest for the water-soluble artesunate. The absolute and relative bioavailability of these compounds has been established in animals, but not in humans, with the exception of artesunate. Oral bioavailability in animals ranges, approximately, between 19 and 35%. A first-pass effect is highly probably for all compounds when administered orally. Artemisinin compounds bind selectively to malaria-infected erythrocytes to yet unidentified targets. They also bind modestly to human plasma proteins, ranging from 43% for artenimol to 81.5% for artelinic acid. Their mode of action is still not completely understood, although different theories have been proposed. The lipid-soluble artemether and artemotil are released slowly when administered intramuscularly because of the 'depot' effect related to the oil formulation. Understanding the pharmacokinetic profile of these 2 drugs helps us to explain the characteristics of the toxicity and neurotoxicity. The water-soluble artesunate is rapidly converted to artenimol at rates that vary with the route of administration, but the processes need to be characterised further, including the relative contribution of pH and enzymes in tissues, blood and liver. This paper intends to summarise contemporary knowledge of the pharmacokinetics of this class of compounds and highlight areas that need further research.
    Matched MeSH terms: Biological Availability
  9. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH
    PLoS Negl Trop Dis, 2014 Jun;8(6):e2890.
    PMID: 24901441 DOI: 10.1371/journal.pntd.0002890
    BACKGROUND: The optimization of snakebite management and the use of antivenom depend greatly on the knowledge of the venom's composition as well as its pharmacokinetics. To date, however, pharmacokinetic reports on cobra venoms and their toxins are still relatively limited. In the present study, we investigated the pharmacokinetics of Naja sumatrana (Equatorial spitting cobra) venom and its major toxins (phospholipase A2, neurotoxin and cardiotoxin), following intravenous and intramuscular administration into rabbits.

    PRINCIPAL FINDINGS: The serum antigen concentration-time profile of the N. sumatrana venom and its major toxins injected intravenously fitted a two-compartment model of pharmacokinetics. The systemic clearance (91.3 ml/h), terminal phase half-life (13.6 h) and systemic bioavailability (41.9%) of N. sumatrana venom injected intramuscularly were similar to those of N. sputatrix venom determined in an earlier study. The venom neurotoxin and cardiotoxin reached their peak concentrations within 30 min following intramuscular injection, relatively faster than the phospholipase A2 and whole venom (Tmax=2 h and 1 h, respectively). Rapid absorption of the neurotoxin and cardiotoxin from the injection site into systemic circulation indicates fast onsets of action of these principal toxins that are responsible for the early systemic manifestation of envenoming. The more prominent role of the neurotoxin in N. sumatrana systemic envenoming is further supported by its significantly higher intramuscular bioavailability (Fi.m.=81.5%) compared to that of the phospholipase A2 (Fi.m.=68.6%) or cardiotoxin (Fi.m.=45.6%). The incomplete absorption of the phospholipase A2 and cardiotoxin may infer the toxins' affinities for tissues at the injection site and their pathological roles in local tissue damages through synergistic interactions.

    CONCLUSION/SIGNIFICANCE: Our results suggest that the venom neurotoxin is absorbed very rapidly and has the highest bioavailability following intramuscular injection, supporting its role as the principal toxin in systemic envenoming.

    Matched MeSH terms: Biological Availability
  10. Satyavert, Gupta S, Choudhury H, Jacob S, Nair AB, Dhanawat M, et al.
    Pharmacol Rep, 2021 Dec;73(6):1734-1743.
    PMID: 34283375 DOI: 10.1007/s43440-021-00312-5
    BACKGROUND: Curcumin, a natural polyphenol from Curcuma longa, is known to possess diversified pharmacological roles including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic properties; however, its bioavailability is severely limited due to its poor solubility, poor absorption, rapid metabolism, and significant elimination. Hydrazinocurcumin (HZC), a novel analogue of curcumin has been reported to overcome the limitations of curcumin and also possesses multiple pharmacological activities. The present study aimed to evaluate the unexplored pharmacokinetic profile of this agent in experimental rats.

    METHODS: Drug formulations were administered to the experimental animals via oral, intravenous and intraperitoneal routes. Blood samples were collected at different pre-determined time intervals to determine the pharmacokinetic parameters. To understand the biodistribution profile of HCZ, tissue samples were isolated from different groups of Sprague-Dawley rats at different time points. The pharmacokinetic parameters of HZC were evaluated after administration through oral (100 mg/kg), intraperitoneal (100 mg/kg) and intravenous (10 mg/kg) routes.

    RESULTS: Significantly (p 

    Matched MeSH terms: Biological Availability
  11. Yap SP, Yuen KH, Wong JW
    J Pharm Pharmacol, 2001 Jan;53(1):67-71.
    PMID: 11206194
    We have investigated the pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under fed and fasted conditions in eight healthy volunteers. The volunteers were administered a single oral dose of mixed tocotrienols (300 mg) under fed or fasted conditions. The bioavailability of tocotrienols under the two conditions was compared using the parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax) and total area under the plasma concentration-time curve (AUC(o-infinity)). A statistically significant difference was observed between the fed and fasted logarithmic transformed values of Cmax (P < 0.01) and AUC(0-infinity) (P < 0.01) for all three tocotrienols. In addition, the 90% confidence intervals for the ratio of the logarithmic transformed AUC(0-infinity) values of alpha-, gamma- and delta-tocotrienols under the fed state over those of the fasted state were found to lie between 2.24-3.40, 2.05-4.09 and 1.59-3.81, respectively, while those of the Cmax were between 2.28-4.39, 2.31-5.87 and 1.52-4.05, respectively. However, no statistically significant difference was observed between the fed and fasted Tmax values of the three homologues. The mean apparent elimination half-life (t(1/2)) of alpha-, gamma- and delta-tocotrienols was estimated to be 4.4, 4.3 and 2.3 h, respectively, being between 4.5- to 8.7-fold shorter than that reported for alpha-tocopherol. No statistically significant difference was observed between the fed and fasted t(1/2) values. The mean apparent volume of distribution (Vd/f) values under the fed state were significantly smaller than those of the fasted state, which could be attributed to increased absorption of the tocotrienols in the fed state.
    Matched MeSH terms: Biological Availability
  12. Jafari SF, Al-Suede FSR, Yehya AHS, Ahamed MBK, Shafaei A, Asif M, et al.
    Biomed Pharmacother, 2020 Oct;130:110602.
    PMID: 32771894 DOI: 10.1016/j.biopha.2020.110602
    PURPOSE: Koetjapic acid is an active compound of a traditional medicinal plant, Sandoricum koetjape. Although koetjapic acid has a promising anticancer potential, yet it is highly insoluble in aqueous solutions. To increase aqueous solubility of koetjapic acid, we have previously reported a chemical modification of koetjapic acid to potassium koetjapate (KKA). However, pharmacokinetics of KKA has not been studied. In this study, pharmacokinetics and antiangiogenic efficacy of KKA are investigated.

    METHODS: Pharmacokinetics of KKA was studied after intravenous and oral administration in SD rats using HPLC. Anti-angiogenic efficacy of KKA was investigated in rat aorta, human endothelial cells (EA.hy926) and nude mice implanted with matrigel.

    RESULTS: Pharmacokinetic study revealed that KKA was readily absorbed into blood and stayed for a long time in the body with Tmax 2.89 ± 0.12 h, Cmax 7.24 ± 0.36 μg/mL and T1/2 1.46 ± 0.03 h. The pharmacological results showed that KKA significantly suppressed sprouting of microvessels in rat aorta with IC50 18.4 ± 4.2 μM and demonstrated remarkable inhibition of major endothelial functions such as migration, differentiation and VEGF expression in endothelial cells. Further, KKA significantly inhibited vascularization in matrigel plugs implanted in nude mice.

    CONCLUSIONS: The results indicate that bioabsorption of KKA from oral route was considerably efficient with longer retention in body than compared to that of the intravenous route. Further, improved antiangiogenic activity of KKA was recorded which could probably be due to its increased solubility and bioavailability. The results revealed that KKA inhibits angiogenesis by suppressing endothelial functions and expression of VEGF.

    Matched MeSH terms: Biological Availability
  13. Alkhateeb Y, Jarrar QB, Abas F, Rukayadi Y, Tham CL, Hay YK, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640512 DOI: 10.3390/molecules25133069
    2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.
    Matched MeSH terms: Biological Availability
  14. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

    Matched MeSH terms: Biological Availability
  15. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K
    Expert Opin Drug Metab Toxicol, 2019 Feb;15(2):103-112.
    PMID: 30582435 DOI: 10.1080/17425255.2019.1563596
    INTRODUCTION: One major challenge to achieving optimal patient outcome in extracorporeal membrane oxygenation (ECMO) is the development of effective dosing strategies in this critically ill patient population. Suboptimal drug dosing impacts on patient outcome as patients on ECMO often require reversal of the underlying pathology with effective pharmacotherapy in order to be liberated of the life-support device. Areas covered: This article provides a concise review of the effective use of antibiotics, analgesics, and sedative by characterizing the specific changes in PK secondary to the introduction of the ECMO support. We also discuss the barriers to achieving optimal pharmacotherapy in patients on ECMO and also the current and potential research that can be undertaken to address these clinical challenges. Expert opinion: Decreased bioavailability due to sequestration of drugs in the ECMO circuit and ECMO induced PK alterations are both significant barriers to optimal drug dosing. Evidence-based drug choices may minimize sequestration in the circuit and would enable safety and efficacy to be maintained. More work to characterize ECMO related pharmacodynamic alterations such as effects of ECMO on hepatic cytochrome system are still needed. Novel techniques to increase target site concentrations should also be explored.
    Matched MeSH terms: Biological Availability
  16. Haniza Hassan, Ahmad Fuad Shamsuddin, Ekram Alias, Meor Mohd Redzuan Meor Mohd Affandi, Siti Khadijah Adam, Rusliza Basir
    MyJurnal
    Introduction:Acyclovir, a widely marketed antiviral drug is used for the treatment of Herpes Simplex infection. High doses of acyclovir are prescribed to patients to attain its maximum therapeutic effect due to its poor absorption and low oral bioavailability. The current therapeutics regiment of acyclovir are known to cause unwarranted adverse effects, thus prompted the need for a suitable drug carrier to improve the pharmacokinetic limitations. Develop-ment of solid lipid nanoparticles for oral delivery of acyclovir proposed in this study aimed to enhance acyclovir oral bioavailability. Methods: Comprehensive experiments and a series of optimization process were carried out to ensure reproducibility and assurance of product quality. The physicochemical characteristics of the solid lipid nanoparticles developed from plant-based solid lipid, Biogapress Vegetal 297 ATO with polysorbate 80 as an emul-sifying agent were also evaluated. Results: The spherical-shaped nanoparticles had an average size of 123 nm with good drug entrapment efficiency, up to 80%. The in vitro drug release study showed that solid lipid nanoparticles had prolonged acyclovir release in simulated intestinal fluid for 24 hours. The nanoparticles formulation was con-sidered stable during storage at refrigerated temperature for at least three months. In vivo oral bioavailability study showed that acyclovir-loaded solid lipid nanoparticles possessed superior oral bioavailability when compared with the commercial acyclovir suspension. Conclusion: In conclusion, this study exhibited the feasibility of solid lipid nanoparticles as an oral delivery vehicle for acyclovir and therefore represent a new promising therapeutic concept of nanoparticulate delivery system.
    Matched MeSH terms: Biological Availability
  17. Ling SS, Yuen KH, Magosso E, Barker SA
    J Pharm Pharmacol, 2009 Apr;61(4):445-9.
    PMID: 19298690 DOI: 10.1211/jpp/61.04.0005
    A liposome preparation that is amenable to receptor-mediated endocytosis has been developed to enhance the oral bioavailability of poorly absorbable peptidomimetic drugs by use of folic acid as the mediator of liposomal uptake.
    Matched MeSH terms: Biological Availability
  18. Gulati N, Kumar Chellappan D, M Tambuwala M, A A Aljabali A, Prasher P, Kumar Singh S, et al.
    Assay Drug Dev Technol, 2021 05 14;19(4):246-261.
    PMID: 33989048 DOI: 10.1089/adt.2021.012
    Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.
    Matched MeSH terms: Biological Availability
  19. Bose A, Elyagoby A, Wong TW
    Int J Pharm, 2014 Jul 1;468(1-2):178-86.
    PMID: 24709212 DOI: 10.1016/j.ijpharm.2014.04.006
    In situ coating of 5-fluorouracil pellets by ethylcellulose and pectin powder mixture (8:3 weight ratio) in capsule at simulated gastrointestinal media provides colon-specific drug release in vitro. This study probes into pharmacodynamic and pharmacokinetic profiles of intra-capsular pellets coated in vivo in rats with reference to their site-specific drug release outcomes. The pellets were prepared by extrusion-spheronization technique. In vitro drug content, drug release, in vivo pharmacokinetics, local colonic drug content, tumor, aberrant crypt foci, systemic hematology and clinical chemistry profiles of coated and uncoated pellets were examined against unprocessed drug. In vivo pellet coating led to reduced drug bioavailability and enhanced drug accumulation at colon (179.13 μg 5-FU/g rat colon content vs 4.66 μg/g of conventional in vitro film-coated pellets at 15 mg/kg dose). The in vivo coated pellets reduced tumor number and size, through reforming tubular epithelium with basement membrane and restricting expression of cancer from adenoma to adenocarcinoma. Unlike uncoated pellets and unprocessed drug, the coated pellets eliminated aberrant crypt foci which represented a putative preneoplastic lesion in colon cancer. They did not inflict additional systemic toxicity. In vivo pellet coating to orally target 5-fluorouracil delivery at cancerous colon is a feasible therapeutic treatment approach.
    Matched MeSH terms: Biological Availability
  20. Sammour RMF, Taher M, Chatterjee B, Shahiwala A, Mahmood S
    Pharmaceutics, 2019 Jul 18;11(7).
    PMID: 31323799 DOI: 10.3390/pharmaceutics11070350
    In the contemporary medical model world, the proniosomal system has been serving as a new drug delivery system that is considered to significantly enhance the bioavailability of drugs with low water solubility. The application of this system can improve the bioavailability of aceclofenac that is used for the relief of pain and inflammation in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. The present study is intended to develop an optimized proniosomal aceclofenac formula by the use of different carriers. Aceclofenac proniosomes have been prepared by slurry method, and different carriers such as maltodextrin, mannitol, and glucose were tried. Prepared proniosomes characterized by differential scanning calorimetry (DSC) analysis and Fourier transform infrared (FTIR) analysis revealed the compatibility of the drug chosen with the ingredient added, powder X-ray diffractometry (XRD) confirmed the amorphous phase of the prepared proniosomes, and finally, the surfactant layer was observed by scanning electron microscopy (SEM). Aceclofenac physical state transformations were confirmed with all formulas but maltodextrin proniosomes exhibited solubility more than other formulations. HPLC method has been used to analyze the niosomes derived from proniosomes in terms of their entrapment capability and drug content. The obtained results revealed that aceclofenac proniosomes can be successfully prepared by using different carriers.
    Matched MeSH terms: Biological Availability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links