Displaying publications 41 - 60 of 104 in total

Abstract:
Sort:
  1. Azami NA, Wirjon IA, Kannusamy S, Teh AH, Abdullah AA
    3 Biotech, 2017 May;7(1):75.
    PMID: 28452023 DOI: 10.1007/s13205-017-0716-7
    The contribution of microbial depolymerase has received much attention because of its potential in biopolymer degradation. In this study, the P(3HB) depolymerase enzyme of a newly isolated Burkholderia cepacia DP1 from soil in Penang, Malaysia, was optimized using response surface methodology (RSM). The factors affecting P(3HB) depolymerase enzyme production were studied using one-variable-at-a-time approach prior to optimization. Preliminary experiments revealed that the concentration of nitrogen source, concentration of carbon source, initial pH and incubation time were among the main factors influencing the enzyme productivity. An increase of 9.4 folds in enzyme production with an activity of 5.66 U/mL was obtained using optimal medium containing 0.028% N of di-ammonium hydrogen phosphate and 0.31% P(3HB-co-21%4HB) as carbon source at the initial pH of 6.8 for 38 h of incubation. Moreover, the RSM model showed great similarity between predicted and actual enzyme production indicating a successful model validation. This study warrants the ability of P(3HB) degradation by B. cepacia DP1 in producing higher enzyme activity as compared to other P(3HB) degraders being reported. Interestingly, the production of P(3HB) depolymerase was rarely reported within genus Burkholderia. Therefore, this is considered to be a new discovery in the field of P(3HB) depolymerase production.
    Matched MeSH terms: Biopolymers
  2. Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al.
    Arch Environ Contam Toxicol, 2017 Aug;73(2):230-239.
    PMID: 28534067 DOI: 10.1007/s00244-017-0414-9
    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
    Matched MeSH terms: Biopolymers
  3. Ahmad NF, Kamboh MA, Nodeh HR, Halim SNBA, Mohamad S
    Environ Sci Pollut Res Int, 2017 Sep;24(27):21846-21858.
    PMID: 28776296 DOI: 10.1007/s11356-017-9820-9
    The present work describes the successful functionalization/magnetization of bio-polymeric spores of Lycopodium clavatum (sporopollenin) with 1-(2-hydroxyethyl) piperazine. Analytical techniques, i.e., Fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometer (VSM), were used to confirm the formation of 1-(2-hydroxyethyl) piperazine-functionalized magnetic sporopollenin (MNPs-Sp-HEP). The proposed adsorbent (MNPs-Sp-HEP) was used for the removal of noxious Pb(II) and As(III) metal ions from aqueous media through a batch-wise method. Different experimental parameters were optimized for the effective removal of selected noxious metal ions. Maximum adsorption capacity (q m ) 13.36 and 69.85 mg g-1 for Pb(II) and As(III), respectively, were obtained. Thermodynamic parameters such as free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) were also studied from the adsorption results and were used to elaborate the mechanism of their confiscation. The obtained results indicated that newly adsorbent can be successfully applied for the decontamination of noxious Pb(II) and As(III) from the aqueous environment.
    Matched MeSH terms: Biopolymers
  4. Moniri M, Boroumand Moghaddam A, Azizi S, Abdul Rahim R, Bin Ariff A, Zuhainis Saad W, et al.
    Nanomaterials (Basel), 2017 Sep 04;7(9).
    PMID: 32962322 DOI: 10.3390/nano7090257
    Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.
    Matched MeSH terms: Biopolymers
  5. Akbar, I., Jaswir, I., Jamal, P., Octavianti, F.
    MyJurnal
    Considerable attention has been directed to nanoparticles based on gelatin biopolymer due to its numerous available active group sites for attaching target molecules and acting as a drug or nutraceutical delivery system aiming to improve the therapeutic effects and also to reduce the side effects of formulated drugs as gelatin is a natural biodegradable biocompatible polymer, nontoxic, readily available, cheap and is used in parental formulations. With mammalian gelatin (pig and cow) as the major source of gelatin production, alternatives are required due to sociocultural and health concerns to maintain halal status. This paper aims at reviewing fish skin gelatin from warm water species which can provide a potential alternative source of gelatin with almost the same rheological properties as mammalian gelatin and is a beneficial way to use fish waste such as skin, bones and fin which is generally discarded. The study also entails a lot of research being done in the field of nanoencapsulation of gelatin with various nutraceuticals as well as drug and gene therapy. There is an especially increasing interest in encapsulating biopeptides within gelatin nanoparticles in the functional food industry due to their role in preventing or delaying the onset of various diseases, food fortification, improvement of food quality, increase in shelf life, targeted peptide delivery and hence can be used as additives in food products. This review also attempts to provide an overview of the application of gelatin nanoparticles in nanoencapsulation in the food industry.
    Matched MeSH terms: Biopolymers
  6. Charbgoo F, Ahmad MB, Darroudi M
    Int J Nanomedicine, 2017;12:1401-1413.
    PMID: 28260887 DOI: 10.2147/IJN.S124855
    CeO2 nanoparticles (NPs) have shown promising approaches as therapeutic agents in biology and medical sciences. The physicochemical properties of CeO2-NPs, such as size, agglomeration status in liquid, and surface charge, play important roles in the ultimate interactions of the NP with target cells. Recently, CeO2-NPs have been synthesized through several bio-directed methods applying natural and organic matrices as stabilizing agents in order to prepare biocompatible CeO2-NPs, thereby solving the challenges regarding safety, and providing the appropriate situation for their effective use in biomedicine. This review discusses the different green strategies for CeO2-NPs synthesis, their advantages and challenges that are to be overcome. In addition, this review focuses on recent progress in the potential application of CeO2-NPs in biological and medical fields. Exploiting biocompatible CeO2-NPs may improve outcomes profoundly with the promise of effective neurodegenerative therapy and multiple applications in nanobiotechnology.
    Matched MeSH terms: Biopolymers/chemistry
  7. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Biopolymers/analysis; Biopolymers/chemistry
  8. Chang HW, Tan TB, Tan PY, Abas F, Lai OM, Wang Y, et al.
    Food Res Int, 2018 03;105:482-491.
    PMID: 29433239 DOI: 10.1016/j.foodres.2017.11.034
    Fish oil-in-water emulsions containing fish oil, thiol-modified β-lactoglobulin (β-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex was higher than those stabilized using β-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion.
    Matched MeSH terms: Biopolymers
  9. Sharif Hossain ABM, Uddin MM, Fawzi M, Veettil VN
    Data Brief, 2018 Apr;17:1245-1252.
    PMID: 29845096 DOI: 10.1016/j.dib.2018.02.053
    The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm) to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose) based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials). Moreover, the chemical elements of nanobiofilm like K+, CO3--, Cl-, Na+ showed standard data using the EN (166).
    Matched MeSH terms: Biopolymers
  10. Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JC
    J Biosci Bioeng, 2018 May 23.
    PMID: 29803402 DOI: 10.1016/j.jbiosc.2018.03.016
    Polyhydroxyalkanoates (PHA) are naturally occurring biopolymers, obtained from microorganisms. Properties like biodegradability and biocompatibility make PHA a part of today's commercial polymer industry. However, the production cost of PHA has been a great barrier to extend its application to large scale production. Substrates and usage of pure cultures constitute the main reason for its high production cost. On the other hand, rapid industrialization i.e., industrial sectors such as sugar, pulp and paper, fruit and food processing, dairies, slaughterhouses, and poultries, has resulted in the generation of the huge quantity of wastes. Consequently, becoming large source of environmental pollution and health hazard. This review emphasizes on the usage of various waste feedstocks obtained from industrial and agricultural industries as an alternate substrate for PHA production. As these waste materials are rich in organic material and also microbes, they can be the good starting material for PHA production. Additionally, advantages and economic importance of mixed cultures and also PHA applications are discussed. Future prospects and challenges in PHA production from waste feedstocks are also highlighted.
    Matched MeSH terms: Biopolymers
  11. Abd Manan FM, Attan N, Zakaria Z, Mahat NA, Abdul Wahab R
    J Biotechnol, 2018 May 28;280:19-30.
    PMID: 29852195 DOI: 10.1016/j.jbiotec.2018.05.015
    To overcome drawbacks in the conventional chemical route to synthesize eugenyl benzoate, immobilized Rhizomucor miehei lipase (RML) as the biocatalyst was proposed. The RML conjugated to a hybrid support consisting of biopolymers, chitosan (CS) and chitin nanowhiskers (CNWs). 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDAC) was used as the crosslinker to bind the lipase. Immobilization of RML was the highest on crosslinked CS/CNWs which gave a protein loading of ∼8.12 mg/g, corresponding to specific and residual activity of 537 U/g and 137%, respectively. Fourier transform infrared spectroscopy, thermogravimetric analysis-differential thermogravimetry, field emission scanning electron and atomic force microscopy of RML-CS/CNWs revealed that RML was successfully attached to the surface of crosslinked CS/CNWs. Under an optimized condition, the highest yield of eugenyl benzoate (56.3%) was attained after 5 h using 3 mg/mL of RML-CS/CNWs with molar ratio of eugenol: benzoic acid of 3:1, as compared to only 47.3% for the free RML. Analyses of FTIR and NMR on purified eugenyl benzoate affirmed that the ester was successfully produced in the enzymatic esterification. Therefore, the use of the RML-CS/CNWs biocatalysts appears promising to afford good yields of eugenyl benzoate within a relatively shorter reaction time.
    Matched MeSH terms: Biopolymers
  12. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2018 Oct 24;8(11).
    PMID: 30352971 DOI: 10.3390/nano8110874
    The synergistic effect of using κ-carrageenan bionanocomposites with the hybridization of cellulose nanocrystals (CNCs) and organically modified montmorillonite (OMMT) reinforcements was studied. The effects of different reinforcements and filler contents were evaluated through mechanical testing, and morphological and water uptake properties. The tensile strength and Young's modulus of both bionanocomposites increased with filler loading and optimized at 4%. OMMT incorporation into the κ-carrageenan/CNCs bionanocomposites resulted in further mechanical property improvement with an optimum ratio of 1:1 (CNCs:OMMT) while maintaining high film transparency. X-ray diffraction and morphological analyses revealed that intercalation occurred between the κ-carrageenan bionanocomposite matrix and OMMT. The water uptake of the κ-carrageenan bionanocomposites was significantly reduced by the addition of both CNCs and OMMT. The enhancements in the mechanical properties and performance of the hybrid bionanocomposite indicate compatibility among the reinforcement, biopolymer, and well-dispersed nanoparticles. This renders the hybrid CNC/OMMT/κ-carrageenan nanocomposites extremely promising for food packaging applications.
    Matched MeSH terms: Biopolymers
  13. Ibrahim S, Othman N, Sreekantan S, Tan KS, Mohd Nor Z, Ismail H
    Polymers (Basel), 2018 Nov 01;10(11).
    PMID: 30961141 DOI: 10.3390/polym10111216
    Natural rubber is one of the most important renewable biopolymers used in many applications due to its special properties that cannot be easily mimicked by synthetic polymers. To sustain the existence of natural rubber in industries, modifications have been made to its chemical structure from time to time in order to obtain new properties and to enable it to be employed in new applications. The chemical structure of natural rubber can be modified by exposure to ultraviolet light to reduce its molecular weight. Under controlled conditions, the natural rubber chains will be broken by photodegradation to yield low-molecular-weight natural rubber. The aim of this work was to obtain what is known as liquid natural rubber via photodegradation, with titanium dioxide nanocrystals as the catalyst. Titanium dioxide, which was firstly synthesized using the sol⁻gel method, was confirmed to be in the form of an anatase, with a size of about 10 nm. In this work, the photodegradation was carried out in latex state and yielded low-molecular-weight natural rubber latex of less than 10,000 g/mol. The presence of hydroxyl and carbonyl groups on the liquid natural rubber (LNR) chains was observed, resulting from the breaking of the chains. Scanning electron microscopy of the NR latex particles showed that titanium dioxide nanocrystals were embedded on the latex surface, but then detached during the degradation reaction.
    Matched MeSH terms: Biopolymers
  14. Halim ALA, Kamari A, Phillip E
    Int J Biol Macromol, 2018 Dec;120(Pt A):1119-1126.
    PMID: 30176328 DOI: 10.1016/j.ijbiomac.2018.08.169
    In this work, chitosan, gelatin and methylcellulose films incorporated with tannic acid (TA) were synthesised, characterised and applied for the first time to preserve cherry tomatoes (Solanum lycopersicum var. cerasiforme) and grapes (Vitis vinifera). The addition of TA at 15% (w/w) increased the transparency value of biopolymer films. The highest increment of transparency value was obtained for MC-TA film, increased from 0.572 to 4.73 A/mm. Based on antimicrobial study, the addition of TA improved the antibacterial properties of biopolymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The ability of films to preserve both fruits was evaluated in a 14-day preservation study. The application of biopolymer films treated with TA has decreased the weight loss and browning index of fruits, as compared to control films. A significant reduction in the weight loss of cherry tomatoes wrapped with chitosan (from 21.3 to 19.6%), gelatin (from 22.1 to 15.5%) and methylcellulose (26.2 to 20.5%) films were obtained following TA treatment. Overall, results obtained from this study highlight the effects of TA on physiochemical properties of biopolymer films and their ability to preserve fruits.
    Matched MeSH terms: Biopolymers/chemistry
  15. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Biopolymers/chemistry
  16. Mohd Shakrie Palan Abdullah, Mohamed Ibrahim Noordin, Syed Ibrahim Mohd Ismail, Nur Murnisa Mustapha, Malina Jasamai, Ahmad Fuad Shamsuddin, et al.
    Sains Malaysiana, 2018;47:323-336.
    Gelatine is used as an excipient for various pharmaceutical dosage forms, such as capsule shells (both hard and soft),
    tablets, suspensions, emulsions and injections (e.g. plasma expanders). It is also broadly used in various industries
    such as food and cosmetics. Gelatine is a biopolymer obtained from discarded or unused materials of bovine, porcine,
    ovine, poultry and marine industrial farms. The discarded materials can be the skin, tendons, cartilages, bones and
    connective tissues. Gelatine sourced from animals is relatively easy and inexpensive to produce. The potential needs of
    gelatine cannot be overemphasised. Rising demands, health concerns and religious issues have heightened the need for
    alternative sources of gelatine. This review presents the various industrial uses of gelatine and the latest developments
    in producing gelatine from various sources.
    Matched MeSH terms: Biopolymers
  17. Vejan P, Abdullah R, Khadiran T, Ismail S
    Lett Appl Microbiol, 2019 Jan;68(1):56-63.
    PMID: 30339728 DOI: 10.1111/lam.13088
    Sustainable crop production for a rapidly growing human population is one of the current challenges faced by the agricultural sector. However, many of the chemical agents used in agriculture can be hazardous to humans, non-targeted organism and environment. Plant growth promoting rhizobacteria have demonstrated a role in promoting plant growth and health under various stress conditions including disease. Unfortunately, bacterial viability degrades due to temperature and other environmental factors (Bashan et al., Plant Soil 378: 1-33, 2014). Encapsulation of bacteria into core-shell biopolymers is one of the promising techniques to overcome the problem. This study deals with the encapsulation of Bacillus salmalaya 139SI using simple double coating biopolymer technique which consist of brown rice protein/alginate and 0·5% low molecular weight chitosan of pH 4 and 6. The influence of biopolymer to bacteria mass ratio and the chitosan pH on the encapsulation process, physic-chemical, morphology and bioactivity properties of encapsulated B. salmalaya 139SI have been studied systematically. Based on the analysis of physico-chemical, morphology and bioactivity properties, B. salmalaya 139S1 encapsulated using double coating encapsulation technology has promising viability pre- and postfreeze-drying with excellent encapsulation yields of 99·7 and 89·3% respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The need of a simple yet effective way of encapsulating plant growth promoting rhizobacteria is crucial to further improve their benefits to global sustainable agriculture practice. Effective encapsulation allows for protection, controlled release and function of the micro-organism, as well as providing a longer shelf life for the product. This research report offers an innovative yet simple way of encapsulating using double coating technology with environmentally friendly biopolymers that could degrade and provide nutrients when in soil. Importantly, the bioactivity of the bacteria is maintained upon encapsulation.
    Matched MeSH terms: Biopolymers/chemistry*
  18. Kalantari K, Afifi AM, Jahangirian H, Webster TJ
    Carbohydr Polym, 2019 Mar 01;207:588-600.
    PMID: 30600043 DOI: 10.1016/j.carbpol.2018.12.011
    This review outlines new developments in the biomedical applications of environmentally friendly ('green') chitosan and chitosan-blend electrospun nanofibers. In recent years, research in functionalized nanofibers has contributed to the development of new drug delivery systems and improved scaffolds for regenerative medicine, which is currently one of the most rapidly growing fields in all of the life sciences. Chitosan is a biopolymer with non-toxic, antibacterial, biodegradable and biocompatible properties. Due to these properties, they are widely applied for biomedical applications such as drug delivery, tissue engineering scaffolds, wound dressings, and antibacterial coatings. Electrospinning is a novel technique for chitosan nanofiber fabrication. These nanofibers can be used in unique applications in biomedical fields due to their high surface area and porosity. The present work reviews recent reports on the biomedical applications of chitosan-based nanofibers in detail.
    Matched MeSH terms: Biopolymers
  19. Govindasamy S, Syafiq IM, Amirul AA, Amin RM, Bhubalan K
    Data Brief, 2019 Apr;23:103675.
    PMID: 30788397 DOI: 10.1016/j.dib.2019.01.023
    A significant source of microplastics is from the usage of microbeads in the market since petrochemical plastic bead is a material used in cosmetic scrubs. A possible way to counteract the problem is by the substitution of synthetic plastic to natural biodegradable polymer. Polyhydroxyalkanoate (PHA) is a general class of thermoplastic microbial polymer and it is the best alternative to some petrochemical plastics due to its biodegradability. Some PHA has earned its way into cosmetic application due to its biocompatibility. This data article reports data on the development of biodegradable microbeads by using the double emulsion solvent evaporation technique. Our data describe the extraction of biopolymer from marine bacteria that was cultivated in shaken flask culture, removal of endotoxins using oxidizing agent, the production of microbeads using a peristaltic pump with a specific flowrate and silicon tubing, and the cytotoxicity of the microbeads.
    Matched MeSH terms: Biopolymers
  20. Ghosal K, Das A, Das SK, Mahmood S, Ramadan MAM, Thomas S
    Int J Biol Macromol, 2019 Jun 01;130:645-654.
    PMID: 30797807 DOI: 10.1016/j.ijbiomac.2019.02.117
    This study aimed to develop and characterize the calcium alginate films loaded with diclofenac sodium and other hydrophilic polymers with different degrees of cross-linking obtained by external gelation process. To the formed films different physicochemical evaluation were performed which showed an initial character of the films. The films produced by this external gelation process were found thicker (0.031-0.038 mm) and stronger (51.9-52.9 MPa) but less elastic (2.3%) than those non-cross-linked films (0.029 mm; 39.7 MPa; 4.4%). The lower water vapor permeability (WVP) values of the films were obtained where maximum level of crosslinking occurs. Composite films can be cross-linked in presence of external crosslinking agent to improve the quality of the produced matrices for various uses. The characterization of the film was performed using Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR) analysis. The Scanning Electron Microscopy (SEM) study showed the morphology of treated composite films. The kinetic release studies showed a sustained release of the drug from the formulated films as it can be prolonged in composite film. The prepared biodegradable Ca-Alginate bio-composite film may be of clinical importance for its therapeutic benefit.
    Matched MeSH terms: Biopolymers/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links