Displaying publications 41 - 60 of 187 in total

Abstract:
Sort:
  1. Deong KK, Prepageran N, Raman R
    Otol Neurotol, 2006 Sep;27(6):855-8.
    PMID: 16936572
    To determine whether the postmyringoplasty tympanic membrane (TM) behaves in a similar way compared with a healthy nonoperated eardrum by calculating and comparing the epithelial migration rate and pattern.
    Matched MeSH terms: Cell Movement*
  2. Kumar S, Fazil MHUT, Ahmad K, Tripathy M, Rajapakse JC, Verma NK
    Methods Mol Biol, 2019;1930:149-156.
    PMID: 30610609 DOI: 10.1007/978-1-4939-9036-8_18
    Analysis of protein-protein interactions is important for better understanding of molecular mechanisms involved in immune regulation and has potential for elaborating avenues for drug discovery targeting T-cell motility. Currently, only a small fraction of protein-protein interactions have been characterized in T-lymphocytes although there are several detection methods available. In this regard, computational approaches garner importance, with the continued explosion of genomic and proteomic data, for handling protein modeling and protein-protein interactions in large scale. Here, we describe a computational method to identify protein-protein interactions based on in silico protein design.
    Matched MeSH terms: Cell Movement*
  3. Lim WL, Soga T, Parhar IS
    Dev Neurosci, 2014;36(2):95-107.
    PMID: 24713635 DOI: 10.1159/000360416
    Migration and final positioning of gonadotropin-releasing hormone (GnRH) neurons in the preoptic area (POA) is critical for reproduction. It is known that maternal dexamethasone (DEX) exposure impairs reproductive function and behaviour in the offspring. However, it is still not known whether maternal DEX exposure affects the postnatal GnRH neurons in the offspring. This study determined the neuronal movement of enhanced green fluorescent protein (EGFP)-tagged GnRH neurons in slice culture of postnatal day 0 (P0), P5 and P50-60 transgenic male rats. Effect of maternal DEX treatment on EGFP-GnRH neuronal movement and F-actin distribution on GnRH neurons at P0 stage were studied. Time-lapse analysis of P0 and P5 EGFP-GnRH neurons displayed active cellular movement within the POA compared to young adult P50-60 stages, suggesting possible fine-tuning movement for positioning of early postnatal GnRH neurons. The DEX-treated EGFP-GnRH neurons demonstrated decreased motility in the POA and reduced F-actin distribution in the GnRH neurons at 60 h culture compared to the vehicle-treated. These results suggest that the P0 GnRH neuronal movement in the POA is altered by maternal DEX exposure, which possibly disrupts the fine-tuning process for positioning and development of early postnatal GnRH neurons in the brain, potentially linked to reproductive dysfunction in adulthood.
    Matched MeSH terms: Cell Movement/drug effects
  4. Musa M, Ouaret D, Bodmer WF
    Anticancer Res, 2020 Nov;40(11):6063-6073.
    PMID: 33109544 DOI: 10.21873/anticanres.14627
    BACKGROUND/AIM: Interactions between colorectal cancer (CRC) cells and myofibroblasts govern many processes such as cell growth, migration, invasion and differentiation, and contribute to CRC progression. Robust experimental tests are needed to investigate the nature of these interactions for future anticancer studies. The purpose of the study was to design and validate in vitro assays for studying the communication between myofibroblasts and CRC epithelial cell lines.

    MATERIALS AND METHODS: The influence of co-culture of myofibroblasts and CRC cell lines is discussed using various in vitro assays including direct co-culture, transwell assays, Matrigel-based differentiation and cell invasion experiments.

    RESULTS: The results from these in vitro assays clearly demonstrated various aspects of the crosstalk between myofibroblasts and CRC cell lines, which include cell growth, differentiation, migration and invasion.

    CONCLUSION: The reported in vitro assays provide a basis for investigating the factors that control the myofibroblast-epithelial cell interactions in CRC in vivo.

    Matched MeSH terms: Cell Movement/drug effects
  5. Paudel KR, Wadhwa R, Tew XN, Lau NJX, Madheswaran T, Panneerselvam J, et al.
    Life Sci, 2021 Jul 01;276:119436.
    PMID: 33789146 DOI: 10.1016/j.lfs.2021.119436
    Non-small cell lung cancer (NSCLC) is one of the major causes of cancer-related mortality globally. Despite the availability of therapeutic options, the improvement in patient survival is yet to be achieved. Recent advances in natural product (e.g., Rutin) research, therapeutic nanotechnology and especially the combination of both could aid in achieving significant improvements in the treatment or management of NSCLC. In this study, we explore the anti-cancer activity of Rutin-loaded liquid crystalline nanoparticles (LCNs) in an in vitro model where we have employed the A549 human lung epithelial carcinoma cell line. The anti-proliferative activity was determined by MTT and Trypan blue assays, whereas, the anti-migratory activity was evaluated by the scratch wound healing assay and a modified Boyden chamber assay. We also evaluated the anti-apoptotic activity by Annexin V-FITC staining, and the colony formation activity was studied using crystal violet staining. Here, we report that Rutin-LCNs showed promising anti-proliferative and anti-migratory activities. Furthermore, Rutin-LCNs also induced apoptosis in the A549 cells and inhibited colony formation. The findings warrant further detailed and in-depth anti-cancer mechanistic studies of Rutin-LCNs with a focus towards a potential therapeutic option for NSCLC. LCNs may help to enhance the solubility of Rutin used in the treatment of lung cancer and hence enhance the anticancer effect of Rutin.
    Matched MeSH terms: Cell Movement*
  6. Maarof M, Chowdhury SR, Saim A, Bt Hj Idrus R, Lokanathan Y
    Int J Mol Sci, 2020 Apr 22;21(8).
    PMID: 32331278 DOI: 10.3390/ijms21082929
    Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100-1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200-400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200-1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400-800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200-400 µg/mL DFCM-KM1 and DFCM-KM2, and 400-800 µg/mL DFCM-FM, which could be useful for treating skin injuries.
    Matched MeSH terms: Cell Movement/drug effects
  7. Abd Ghafar N, Ker-Woon C, Hui CK, Mohd Yusof YA, Wan Ngah WZ
    BMC Complement Altern Med, 2016 Jul 29;16:259.
    PMID: 27473120 DOI: 10.1186/s12906-016-1248-0
    BACKGROUND: The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts.

    METHODS: Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively.

    RESULTS: Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses.

    CONCLUSION: These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing.

    Matched MeSH terms: Cell Movement/drug effects
  8. Tan KX, Danquah MK, Sidhu A, Lau SY, Ongkudon CM
    Biotechnol Prog, 2018 01;34(1):249-261.
    PMID: 28699244 DOI: 10.1002/btpr.2524
    Targeted delivery of drug molecules to specific cells in mammalian systems demonstrates a great potential to enhance the efficacy of current pharmaceutical therapies. Conventional strategies for pharmaceutical delivery are often associated with poor therapeutic indices and high systemic cytotoxicity, and this result in poor disease suppression, low surviving rates, and potential contraindication of drug formulation. The emergence of aptamers has elicited new research interests into enhanced targeted drug delivery due to their unique characteristics as targeting elements. Aptamers can be engineered to bind to their cognate cellular targets with high affinity and specificity, and this is important to navigate active drug molecules and deliver sufficient dosage to targeted malignant cells. However, the targeting performance of aptamers can be impacted by several factors including endonuclease-mediated degradation, rapid renal filtration, biochemical complexation, and cell membrane electrostatic repulsion. This has subsequently led to the development of smart aptamer-immobilized biopolymer systems as delivery vehicles for controlled and sustained drug release to specific cells at effective therapeutic dosage and minimal systemic cytotoxicity. This article reports the synthesis and in vitro characterization of a novel multi-layer co-polymeric targeted drug delivery system based on drug-loaded PLGA-Aptamer-PEI (DPAP) formulation with a stage-wise delivery mechanism. A thrombin-specific DNA aptamer was used to develop the DPAP system while Bovine Serum Albumin (BSA) was used as a biopharmaceutical drug in the synthesis process by ultrasonication. Biophysical characterization of the DPAP system showed a spherical shaped particulate formulation with a unimodal particle size distribution of average size ∼0.685 µm and a zeta potential of +0.82 mV. The DPAP formulation showed a high encapsulation efficiency of 89.4 ± 3.6%, a loading capacity of 17.89 ± 0.72 mg BSA protein/100 mg PLGA polymeric particles, low cytotoxicity and a controlled drug release characteristics in 43 days. The results demonstrate a great promise in the development of DPAP formulation for enhanced in vivo cell targeting. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:249-261, 2018.
    Matched MeSH terms: Cell Movement/drug effects
  9. Anasamy T, Thy CK, Lo KM, Chee CF, Yeap SK, Kamalidehghan B, et al.
    Eur J Med Chem, 2017 Jan 05;125:770-783.
    PMID: 27723565 DOI: 10.1016/j.ejmech.2016.09.061
    This study seeks to investigate the relationship between the structural modification and bioactivity of a series of tribenzyltin complexes with different ligands and substitutions. Complexation with the N,N-diisopropylcarbamothioylsulfanylacetate or isonicotinate ligands enhanced the anticancer properties of tribenzyltin compounds via delayed cancer cell-cycle progression, caspase-dependent apoptosis induction, and significant reduction in cell motility, migration and invasion. Halogenation of the benzyl ring improved the anticancer effects of the tribenzyltin compounds with the N,N-diisopropylcarbamothioylsulfanylacetate ligand. These compounds also demonstrated far greater anticancer effects and selectivity than cisplatin and doxorubicin, which provides a rationale for their further development as anticancer agents.
    Matched MeSH terms: Cell Movement/drug effects*
  10. Sundarasekar J, Sahgal G, Murugaiyah V, Lay LK, Thong OM, Subramaniam S
    Pak J Pharm Sci, 2018 Nov;31(6):2537-2543.
    PMID: 30473529
    Spider lily (Hymenocallis littoralis) belongs to Amaryllidaceae family is a well-known plant species for its medicinal properties. The inhibitory effects of H. littoralis methanol sonication extracts were evaluated for wound healing activity. This is the first report on the wound healing activity of Malaysian origin H. littoralis. The bulb, flower, root, anther, stem and leaves of H. littoralis methanol sonication extracts were used for scratch-wound assay. The cell line was treated with two different concentrations; 1 and 10μg/ml of extracts. The extracts were prepared freshly by dissolving in sterile phosphate saline buffer (PBS) and the healing activity was observed from 2, 4, 8, 12, 24, 36 and 48 h. The bulb, root, stem and anther methanol extracts demonstrated active wound healing activities at 1 μg mL-1at 36 h of treatment. At the low concentration the bulb, root, stem and anther methanol extracts heals the wound compared to leaf and flower extracts. It's demonstrated that these extracts contain effective phytochemical substances which are responsible for wound healing process. This finding suggests the potential application of H. littoralis methanol extract in wound healing activity.
    Matched MeSH terms: Cell Movement/drug effects*
  11. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
    Matched MeSH terms: Cell Movement/drug effects
  12. Langford-Smith AWW, Hasan A, Weston R, Edwards N, Jones AM, Boulton AJM, et al.
    Sci Rep, 2019 02 19;9(1):2309.
    PMID: 30783159 DOI: 10.1038/s41598-019-38921-z
    Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p cells (p cells (p cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.
    Matched MeSH terms: Cell Movement/physiology
  13. Wang Y, Gao F, Ooi KK, Tai Q, Zhang J, Zhu Y, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(4):297-311.
    PMID: 32464002 DOI: 10.1615/JEnvironPatholToxicolOncol.2019030482
    Early development of liver cancer is usually asymptomatic. The overall survival rate of patients is relatively low due to late diagnosis, despite hepatocellular carcinoma being a common diagnosis. The high mortality rate of liver cancer was due to its overactivated cellular mitochondrial activities, namely thioredoxin reductase enzymatic activities and its downstream activation of nuclear factor kappa B (NF-κB) signaling pathways for cancer cell migration. Our previous study on this candidate compound on A2780 ovarian cancer cells and MCF-7 breast cancer cells, through modulation of cell-cycle checkpoints and respective targeted apoptosis pathways. The current study used HepG2 hepatocellular carcinoma cell lines as a representative in vitro liver cancer cell model. The half maximal inhibitory concentration (IC50) value was obtained via incubation of PTZ compound for 24 h yield of 37.03 μM, whereby it was three-fold more potent than the standard control tested, cisplatin (109.23 μM). The subsequent application of IC50 dosage of PTZ onto HepG2 cells illustrated a growth-static effect via activation of S-phase cell-cycle checkpoints, immediately followed by regulation of apoptosis. Increased cellular concentration of reactive oxygen species eventually generated oxidative damages on mitochondria, hence resulting in the release of cytochrome c protein and suppression of TrxR enzymatic activity, in conjunction with the suppression on invasion of cancer cells via Matrigel invasion chamber. In conclusion, PTZ was hypothesized to act effectively on mitochondria of HepG2 cells; hence it should proceed into detailed drug targeting mechanism research.
    Matched MeSH terms: Cell Movement/drug effects
  14. Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Ismail NH, et al.
    Asian Pac J Cancer Prev, 2017 Dec 29;18(12):3333-3341.
    PMID: 29286228
    Cancer is one of the most common causes of death in the developed world, with one-third of people diagnosed with
    cancer during their lifetime. Oral cancer commonly occurs involving the buccal mucosa (cheeks), tongue, floor of the
    mouth and lip. It is one of the most devastating and disfiguring of malignancies. Morinda citrifolia L., commonly known
    as ‘noni’, belongs to the Rubiaceae family. It is native to the Pacific islands, Hawaii, Caribbean, Asia and Australia.
    The plant displays broad curative effects in pharmacological studies. Damnacanthal (DAM) and Nordamnacanthal
    (NDAM), anthraquinone compounds isolated from the roots of Morinda citrifolia L., has been used for the treatment
    of several chronic diseases including cancer. The objectives of this study were to evaluate cytotoxicity, morphological
    changes, cell death mode (apoptosis/necrosis), and cell migration induced by DAM and NDAM on the most common
    type of oral cancer, oral squamous cell carcinoma (OSCC)cells. Anti-proliferative effects of these compounds against
    OSCC cell lines were determined by MTT assay. The mode of cell death was analysed by phase contrast and fluorescent
    microscopy as well as flow cytometry. In addition, cell migration was assessed. The results showed that DAM and
    NDAM exerted cytotoxicity against OSCC cells with IC50 values of 1.9 to >30 μg/ml after 72 h treatment. Maximum
    growth inhibition among the tested cell lines for both compounds was observed in H400 cells, and thus it was selected
    for further study. The study demonstrated inhibition of H400 OSCC cell proliferation, marked apoptotic morphological
    changes, induction of early apoptosis, and inhibition of cell migration by DAM and NDAM. Therefore, this information
    suggests that these compounds from noni have potential for used as anti tumor agents for oral cancer therapy.
    Matched MeSH terms: Cell Movement/drug effects*
  15. Abu N, Akhtar MN, Ho WY, Yeap SK, Alitheen NB
    Molecules, 2013 Aug 27;18(9):10367-77.
    PMID: 23985955 DOI: 10.3390/molecules180910367
    Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line.
    Matched MeSH terms: Cell Movement/drug effects*
  16. Malagobadan S, Ho CS, Nagoor NH
    Cancer Biol Med, 2020 Feb 15;17(1):101-111.
    PMID: 32296579 DOI: 10.20892/j.issn.2095-3941.2019.0010
    Objective: Anoikis is apoptosis that is induced when cells detach from the extracellular matrix and neighboring cells. As anoikis serves as a regulatory barrier, cancer cells often acquire resistance towards anoikis during tumorigenesis to become metastatic. MicroRNAs (miRNAs) are short strand RNA molecules that regulate genes post-transcriptionally by binding to mRNAs and reducing the expression of its target genes. This study aimed to elucidate the role of a novel miRNA, miR-6744-5p, in regulating anoikis in breast cancer and identify its target gene. Methods: An anoikis resistant variant of the luminal A type breast cancer MCF-7 cell line (MCF-7-AR) was generated by selecting and amplifying surviving cells after repeated exposure to growth in suspension. MiRNA microarray analysis identified a list of dysregulated miRNAs from which miR-6744-5p was chosen for overexpression and knockdown studies in MCF-7. Additionally, the miRNA was also overexpressed in a triple-negative breast cancer cell line, MDA-MB-231, to evaluate its ability to impair the metastatic potential of breast cancer cells. Results: This study showed that overexpression and knockdown of miR-6744-5p in MCF-7 increased and decreased anoikis sensitivity, respectively. Similarly, overexpression of miR-6744-5p in MDA-MB-231 increased anoikis and also decreased tumor cell invasion in vitro and in vivo. Furthermore, NAT1 enzyme was identified and validated as the direct target of miR-6744-5p. Conclusions: This study has proven the ability of miR-6744-5p to increase anoikis sensitivity in both luminal A and triple negative breast cancer cell lines, highlighting its therapeutic potential in treating breast cancer.
    Matched MeSH terms: Cell Movement/genetics
  17. Kithur Mohamed S, Asif M, Nazari MV, Baharetha HM, Mahmood S, Yatim ARM, et al.
    Indian J Pharmacol, 2019 4 30;51(1):45-54.
    PMID: 31031467 DOI: 10.4103/ijp.IJP_312_18
    OBJECTIVES: Sophorolipids (SLs) are a group of surface-active glycolipids produced by a type of nonpathogenic yeast Candida bombicola in the presence of vegetable oil through fermentation technology. SLs have shown antitumor activity; however, the mechanism of action underlying the anticancer activity of SLs is poorly understood. This work evaluated the anticancer activity of SLs fermented from palm oil by exploring its antiangiogenic activity.

    MATERIALS AND METHODS: The SLs that were fermented and further characterized for their biochemical activities. Cytotoxicity study was performed to assess cytostatic properties. A series of in vitro and ex vivo angiogenesis assay was also carried out. The relative fold change in the expression of p53 mRNA by SLs was also studied.

    RESULTS: Altogether, the data show that SLs derived from palm oil fermentation process inhibited neovascularization in the ex vivo tissue segments and also the endothelial cell proliferation between 50% and 65% inhibition as a whole. The palm oil derived SLs also caused downregulation of the suppression level of vascular endothelial growth factor and also upregulate the p53 mRNA level. The analytical studies revealed the presence of high amount of phenolic compounds but with relatively weak antioxidant activity. The gas chromatography-mass spectrometry studies revealed abundant amount of palmitic and oleic acid, the latter an established antiangiogenic agent, and the former being proangiogenic.

    CONCLUSION: Therefore, it can be concluded from this study that SLs derived from fermented palm oil have potent antiangiogenic activity which may be attributed by its oleic acid component.

    Matched MeSH terms: Cell Movement/drug effects
  18. S M N Mydin RB, Azlan A, Okekpa SI, Gooderham NJ
    Cell Biochem Funct, 2024 Mar;42(2):e3945.
    PMID: 38362935 DOI: 10.1002/cbf.3945
    MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.
    Matched MeSH terms: Cell Movement/genetics
  19. Liu Y, Dong M, Jia Y, Yang D, Hui Y, Yang X
    Pathol Res Pract, 2024 Oct;262:155544.
    PMID: 39197215 DOI: 10.1016/j.prp.2024.155544
    BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks the expression of three receptors commonly targeted in breast cancer treatment. In this study, the research focused on investigating the role of centrosomal protein 55 (CEP55) in TNBC progression and its interaction with the transcription factor Spi-1 proto-oncogene (SPI1).

    METHODS: Various techniques including qRT-PCR, western blotting, and immunohistochemistry assays were utilized to examine gene expression patterns. Functional assays such as wound-healing assay, transwell invasion assay, 5-Ethynyl-2'-deoxyuridine assay, and metabolic assays were conducted to assess the impact of CEP55 on the behaviors of TNBC cells. CD163-positive macrophages were quantified by flow cytometry. The chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to assess the association of SPI1 with CEP55. A xenograft mouse model experiment was used to analyze the impact of SPI1 on tumor development in vivo.

    RESULTS: CEP55 and SPI1 expression levels were significantly upregulated in TNBC tissues and cells. The depletion of CEP55 led to decreased TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization, indicating its crucial role in promoting TNBC progression. Moreover, SPI1 transcriptionally activated CEP55 in TNBC cells, and its overexpression was associated with accelerated tumor growth in vivo. Further, CEP55 overexpression relieved SPI1 silencing-induced inhibitory effects on TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization.

    CONCLUSION: SPI1-mediated transcriptional activation of CEP55 plays a key role in enhancing TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization. These insights provide valuable information for potential targeted therapies to combat TNBC progression by modulating the SPI1-CEP55 axis.

    Matched MeSH terms: Cell Movement/genetics
  20. Mok PL, Anandasayanam ANK, Oscar David HM, Tong J, Farhana A, Khan MSA, et al.
    PLoS One, 2021;16(4):e0250552.
    PMID: 33914777 DOI: 10.1371/journal.pone.0250552
    Multiple matrix metalloproteinases have significant roles in tissue organization during lung development, and repair. Imbalance of proteinases may lead to chronic inflammation, changes in tissue structure, and are also highly associated to cancer development. The role of MMP20 is not well studied in lung organogenesis, however, it was previously shown to be present at high level in lung adenocarcinoma. The current study aimed to identify the functional properties of MMP20 on cell proliferation and motility in a lung adenocarcinoma in vitro cell model, and relate the interaction of MMP20 with other molecular signalling pathways in the lung cells after gaining tumoral properties. In this study, two different single guide RNA (sgRNAs) that specifically targeted on MMP20 sites were transfected into human lung adenocarcinoma A549 cells by using CRISPR-Cas method. Following that, the changes of PI3-K, survivin, and MAP-K mRNA gene expression were determined by Real-Time Polymerase Chain Reaction (RT-PCR). The occurrence of cell death was also examined by Acridine Orange/Propidium Iodide double staining. Meanwhile, the motility of the transfected cells was evaluated by wound healing assay. All the data were compared with non-transfected cells as a control group. Our results demonstrated that the transfection of the individual sgRNAs significantly disrupted the proliferation of the A549 cell line through suppression in the gene expression of PI3-K, survivin, and MAP-K. When compared to non-transfected cells, both experimental cell groups showed reduction in the migration rate, as reflected by the wider gaps in the wound healing assay. The current study provided preliminary evidence that MMP20 could have regulatory role on stemness and proliferative genes in the lung tissues and affect the cell motility. It also supports the notion that targeting MMP20 could be a potential treatment mode for halting cancer progression.
    Matched MeSH terms: Cell Movement/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links