In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (qm) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate.
In the present work, the synthesis of cellulose nanowhiskers (CNW)/chitosan nanocomposite films via deep eutectic solvents (DES) changing the chemical structures were carried out. It was observed that a pure chitosan film has broadband at 3180-3400 cm-1, indicating amide and hydroxyl groups. Upon CNW incorporation, the peak gets sharper and stronger and shifts to a greater wavelength. Further, the addition of DES infuses more elements of amide into the nanocomposite films. Moreover, the mechanical properties incorporating CNW filler into a chitosan matrix show an enhancement in tensile strength (TS), Young's modulus (YM), and elongation at break. The TS and YM increase while the elongation decrease as the CNW concentration increases. The YM of biocomposite films is increased to 723 MPa at 25% CNW into chitosan films. Besides, the TS has enhanced to 11.48 MPa at 15% CNW concentration in the biocomposite films. The elongation at break has decreased to 11.7% at 25% CNW concentration. Hence, incorporating CNW into the chitosan matrix via DES can still improve the mechanical properties of the nanocomposite films. Therefore, the application of DES results in a lower YM and TS as the films are hygroscopic. In conclusion, DES can be considered the new green solvent media for synthesizing materials. It has the potential to replace ionic liquids due to its biodegradability and non-toxic properties while preserving the character of low-vapour pressure. Besides that, chitosan can be used as potential material for applications in process industries, such as the biomedical and pharmaceutical industries. Thus, DES can be used as a green solvent and aim to reduce the toxic effect of chemicals on the environment during chemical production.
Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
Corrosion inhibitors have offered new opportunities to bring positive impacts on our society, especially when it has helped in protecting metals against corrosion in an aqueous solution. Unfortunately, the commonly known corrosion inhibitors used to protect metals or alloys against corrosion are invariably related to one or more drawbacks such as the employment of hazardous anti-corrosion agents, leakage of anti-corrosion agents in aqueous solution, and high solubility of anti-corrosion agents in water. Over the years, using food additives as anti-corrosion agents have drawn interest as it offers biocompatibility, less toxic, and promising applications. In general, food additives are considered safe for human consumption worldwide, and it was rigorously tested and approved by the US Food and Drug Administration. Nowadays, researchers are more interested in innovating and using green, less toxic, and economical corrosion inhibitors in metal and alloy protection. As such, we have reviewed the use of food additives to protect metals and alloys against corrosion. The current review is significant and differs from the previous review articles made on corrosion inhibitors, in which the new role of food additives is highlighted as green and environmental-friendly substances in the protection of metals and alloys against corrosion. It is anticipated that the next generation will be utilizing non-toxic and sustainable anti-corrosion agents, in which food additives might be the potential to fulfill the green chemistry goals.
A successful attempt has been made to improve the mechanical properties of Hydroxyapatite (HAp) and reduced graphene oxide (rGO) composite nanoparticles (NPs). Various proportions of HAp and rGO were synthesized to improve the mechanical properties. HAp NPs were prepared using the wet precipitation method and further calcined to form crystalline particles. The physicochemical characterization of the HAp NPs revealed that the crystalline size and percentage of crystallinity were calculated to be 42.49 ± 1.2 nm and 44% post calcination. Furthermore, the rGO-HA composites were prepared using ball milling and obtained in the shape of pellets with different ratios of rGO (10, 20, 30, 40, 50% wt.). The mechanical properties have been evaluated through a Universal testing machine. Compared to calcined HAp (cHAp), the strength of variants significantly enhanced with the increased concentration of rGO. The compressive strength of HA-rGO with the ratio of the concentration of 60:40% by weight is a maximum of about 10.39 ± 0.43 MPa. However, the porosity has also been bolstered by increasing the concentration of rGO, which has been evaluated through the liquid displacement method. The mean surface roughness of the composites has also been evaluated from the images through Image J (an image analysis program).
Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
The purpose of this study was to explore the new effective method and investigate the dissipation of chlorfenapyr and deltamethrin (DM) pesticides used in the treatment of guava fruit from tropical and sub-tropical areas of Pakistan. Five different solutions of varying concentrations of pesticides were prepared. This study involved the in-vitro and in-vivo analysis of modulated electric flux-triggered degradation as an efficient method for the safer degradation of selected pesticides. The Taser gun was used as a tool for providing different numbers of electrical shocks of million voltages to the pesticides present in guava fruit at different temperatures. The degraded pesticides were extracted and analyzed by High-performance liquid chromatography (HPLC). The HPLC chromatograms verified that significant dissipation of pesticides took place when these were exposed to 9 shocks at 37 °C, which proved the efficiency of this degradation method. More than 50% of the total spray of both pesticides was dissipated. Thus, modulated electrical flux-triggered degradation is one of the effective methods for pesticide degradation.
Glottic insufficiency is one of the voice disorders affecting all demographics. Due to the incomplete closure of the vocal fold, there is a risk of aspiration and ineffective phonation. Current treatments for glottic insufficiency include nerve repair, reinnervation, implantation and injection laryngoplasty. Injection laryngoplasty is favored among these techniques due to its cost-effectiveness and efficiency. However, research into developing an effective injectable for the treatment of glottic insufficiency is currently lacking. Therefore, this study aims to develop an injectable gelatin (G) hydrogel crosslinked with either 1-ethyl-3-(3-dimethylaminpropyl)carbodiimide hydrochloride) (EDC) or genipin (gn). The gelation time, biodegradability and swelling ratio of hydrogels with varying concentrations of gelatin (6-10% G) and genipin (0.1-0.5% gn) were investigated. Some selected formulations were proceeded with rheology, pore size, chemical analysis and in vitro cellular activity of Wharton's Jelly Mesenchymal Stem Cells (WJMSCs), to determine the safety application of the selected hydrogels, for future cell delivery prospect. 6G 0.4gn and 8G 0.4gn were the only hydrogel groups capable of achieving complete gelation within 20 min, exhibiting an elastic modulus between 2 and 10 kPa and a pore size between 100 and 400 μm. Moreover, these hydrogels were biodegradable and biocompatible with WJMSCs, as > 70% viability were observed after 7 days of in vitro culture. Our results suggested 6G 0.4gn and 8G 0.4gn hydrogels as potential cell encapsulation injectates. In light of these findings, future research should focus on characterizing their encapsulation efficiency and exploring the possibility of using these hydrogels as a drug delivery system for vocal fold treatment.
Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
Chitosan nanoparticles (CS NPs) showed promising results in drug, vaccine and gene delivery for the treatment of various diseases. The considerable attention towards CS was owning to its outstanding biological properties, however, the main challenge in the application of CS NPs was faced during their size-controlled synthesis. Herein, ionic gelation reaction between CS and sodium tripolyphosphate (TPP), a widely used and safe CS cross-linker for biomedical application, was exploited. The development of nanodelivery platform, namely Sorafenib-loaded chitosan nanoparticles (SF-CS NPs), was constructed in order to improve SF drug delivery to human Hepatocellular Carcinoma (HepG2) cell lines. The NPs were artificially fabricated using an ionic gelation technique. A number of CS NPs that had been loaded with an SF were prepared using different concentrations of sodium tripolyphosphate (TPP). These concentrations were 2.5, 5, 10, and 20 mg/mL, and they are abbreviated as SF-CS NPs 2.5, SF-CS NPs 5.0, SF-CS NPs 10, and SF-CS NPs 20 respectively. DLS, FTIR, XRD, HRTEM, TGA, and FESEM with EDX and TEM were used for the physiochemical characterisation of SF-CS NPs. Both DLS and HRTEM techniques demonstrated that smaller particles were produced when the TPP content was raised. In a PBS solution with a pH of 4.5, the SF exhibited efficient release from the nanoparticles, demonstrating that the delivery mechanism is effective for tumour cells. The cytotoxicity investigation showed that their anticancer effect against HepG2 cell lines was significantly superior than that of free SF. In addition, the nanodrug demonstrated an absence of any detectable toxicity to normal adult human dermal fibroblast (HDFa) cell lines. This is a step towards developing a more effective anticancer medication delivery system with sustained-release characteristics, which will ultimately improve the way cancer is managed.
Over the past decades, increasing research in metal-organic frameworks (MOFs) being a large family of highly tunable porous materials with intrinsic physical properties, show propitious results for a wide range of applications in adsorption, separation, electrocatalysis, and electrochemical sensors. MOFs have received substantial attention in electrochemical sensors owing to their large surface area, active metal sites, high chemical and thermal stability, and tunable structure with adjustable pore diameters. Benefiting from the superior properties, MOFs and MOF-derived carbon materials act as promising electrode material for the detection of food contaminants. Although several reviews have been reported based on MOF and its nanocomposites for the detection of food contaminants using various analytical methods such as spectrometric, chromatographic, and capillary electrophoresis. But there no significant review has been devoted to MOF/and its derived carbon-based electrodes using electrochemical detection of food contaminants. Here we review and classify MOF-based electrodes over the period between 2017 and 2022, concerning synthetic procedures, electrode fabrication process, and the possible mechanism for detection of the food contaminants which include: heavy metals, antibiotics, mycotoxins, and pesticide residues. The merits and demerits of MOF as electrode material and the need for the fabrication of MOF and its composites/derivatives for the determination of food contaminants are discussed in detail. At last, the current opportunities, key challenges, and prospects in MOF for the development of smart sensing devices for future research in this field are envisioned.
The present work systematically investigated the influence of starch silylation on the structures and properties of starch/epoxidized soybean oil-based bioplastics. Silylated starch was synthesized using starch particles (SP-ST) or gelatinized starch (SG-ST) under different silane hydrolysis pHs. Due to the appearance of -NH2 groups and lower OH wavenumbers, SP-ST obtained at pH 5 showed higher silylation degree and stronger hydrogen bond interaction with epoxidized soybean oils (ESO) than that at pH 11. The morphology analysis revealed better interfacial compatibility of ESO and SP-ST. The tensile strength of the samples containing SP-ST increased by 51.91 % than the control, emphasizing the enhanced interaction within the bioplastics. However, tensile strength of the bioplastics with SG-ST decreased by 59.56 % due to their high moisture contents from unreacted silanes. Additionally, the bioplastics with SG-ST exhibited an obvious reduction of thermal stability and an increase in water solubility because of the presence of unreacted APMS. The bioplastic degradation was not prevented by starch silylation except high pH. The bioplastics showed the most desirable tensile properties, thermal stability, and water solubility when starch was surface-modified with silanes hydrolyzed at pH 5. These outcomes made the fabricated bioplastics strong candidates for petroleum-based plastics for packaging applications.
Areca nut (Areca catechu L.) is commonly consumed as a chewing food in the Asian region. However, the investigations into the components of areca nut are limited. In this study, we have developed an approach that combines mass spectrometry with feature-based molecular network to explore the chemical characteristics of the areca nut. In comparison to the conventional method, this technique demonstrates a superior capability in annotating unknown compounds present in areca nut. We annotated a total of 52 compounds, including one potential previously unreported alkaloid, one carbohydrate, and one phenol and confirmed the presence of 7 of them by comparing with commercial standards. The validated method was used to evaluate chemical features of areca nut at different growth stages, annotating 25 compounds as potential biomarkers for distinguishing areca nut growth stages. Therefore, this approach offers a rapid and accurate method for the component analysis of areca nut.
The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P
This review critically examines the effectiveness of ion-imprinted membranes (IIMs) in selectively recovering lithium (Li) from challenging sources such as seawater and brine. These membranes feature customized binding sites that specifically target Li ions, enabling selective separation from other ions, thanks to cavities shaped with crown ether or calixarene for improved selectivity. The review thoroughly investigates the application of IIMs in Li extraction, covering extensive sections on 12-crown-4 ether (a fundamental crown ether for Li), its modifications, calixarenes, and other materials for creating imprinting sites. It evaluates these systems against several criteria, including the source solution's complexity, Li+ concentration, operational pH, selectivity, and membrane's ability for regeneration and repeated use. This evaluation places IIMs as a leading-edge technology for Li extraction, surpassing traditional methods like ion-sieves, particularly in high Mg2+/Li+ ratio brines. It also highlights the developmental challenges of IIMs, focusing on optimizing adsorption, maintaining selectivity across varied ionic solutions, and enhancing permselectivity. The review reveals that while the bulk of research is still exploratory, only a limited portion has progressed to detailed lab verification, indicating that the application of IIMs in Li+ recovery is still at an embryonic stage, with no instances of pilot-scale trials reported. This thorough review elucidates the potential of IIMs in Li recovery, cataloging advancements, pinpointing challenges, and suggesting directions for forthcoming research endeavors. This informative synthesis serves as a valuable resource for both the scientific community and industry professionals navigating this evolving field.
During the frying of foods, undesirable reactions such as protein denaturation, acrylamide formation, and so on occur in the product, which has confirmed carcinogenic effects. The use of antioxidants has been proposed as an effective solution to reduce the formation of these compounds during the process. The current study aimed to assess the impact of an edible coating holding within chia seed gum (CSG) and Rosa canina L. extract (RCE) nanoemulsions on the physicochemical properties, oil uptake, acrylamide formation, 5-hydroxymethyl-2-furfural (HMF) content, and sensory characteristics of beef-turkey burgers. The RCE-loaded nanoemulsions were prepared using the ultrasonic homogenization method, and different concentrations (i.e., 10%, 20%, and 40% w/w) were added to the CSG solutions; these active coatings were used to cover the burgers. CSG-based coatings, especially coatings containing the highest concentration of nanoemulsions (40%), caused a significant decrease in the oil uptake and moisture retention, acrylamide content, and HMF content of fried burgers. The texture of coated burgers was softer than that of uncoated samples; they also had a higher color brightness and a lower browning index. Field emission scanning electron microscopy analysis showed that RCE concentration less than 40% should be used in CSG coatings because it will cause minor cracks, which is an obvious possibility of failure of coating performance. Coating significantly (4-10 times) increased the antioxidant activity of burgers compared to the control. In conclusion, it is suggested to use the active coating produced in this study to improve fried burger quality and modulate acrylamide formation.
This study investigates the effects of SCG embedded into biodegradable polymer blends and aimed to formulate and characterise biomass-reinforced biocomposites using spent coffee ground (SCG) as reinforcement in PHB/PLA polymer blend. The effect of SCG filler loading and varying PHB/PLA ratios on the tensile properties and morphological characteristics of the biocomposites were examined. The results indicated that tensile properties reduction could be due to its incompatibility with the PHB/PLA matrixSCG aggregation at 40 wt% content resulted in higher void formation compared to lower content at 10 wt%. A PHB/PLA ratio of 50/50 with SCG loading 20 wt% was chosen for biocomposites with treated SCG. Biological treatment of SCG using Phanerochaete chrysosporium CK01 and Aspergillus niger DWA8 indicated P. chrysosporium CK01 necessitated a higher moisture content for optimum growth and enzyme production, whereas the optimal conditions for enzyme production (50-55 %, w/w) differed from those promoting A. niger DWA8 growth (40 %, w/w). SEM micrographs highlighted uniform distribution and effective wetting of treated SCG, resulting in improvements of tensile strength and modulus of biocomposites, respectively. The study demonstrated the effectiveness of sustainable fungal treatment in enhancing the interfacial adhesion between treated SCG and the PHB/PLA matrix.
This work investigated the effects of 3-aminopropyl triethoxy silane (APTES) hydrolysis time on the physicochemical properties of the resulting starch/epoxidized soybean oil (ESO) bioplastics comprehensively. FTIR analysis confirmed that APTES hydrolyzed for 4 h had the best modification effect on starch. The results of XRD and TGA demonstrated the successful silylation of starch by APTES despite hydrolysis time. Silylation treatment reduced the thermal stability of starch slightly, but enhanced the thermal stability of the resultant bioplastics, revealing better interaction between silylated starch and ESO. The interfacial adhesion of starch and ESO in the bioplastics was obviously enhanced when APTES was hydrolyzed for 2-24 h. The bioplastics with APTES hydrolyzed for 2-4 h showed more desirable tensile properties as the silane hydrolysis was complete and self-condensation of hydrolyzed silanes was avoided. The bioplastics containing silylated starch still showed superior opacity and biodegradability.