Displaying publications 41 - 60 of 82 in total

Abstract:
Sort:
  1. Chang, Kok Yung, Kwan, Wai Hoe, Kua, Hui Bun
    Scientific Research Journal, 2018;15(1):75-83.
    MyJurnal
    The massive growth of construction industry especially in the developing countries results in extensive quarrying activities which ultimately would lead to the depletion of natural resources. Apart from extensive extraction of the natural granite from the earth for concrete production, marble production industry is also majorly contributing to the quarrying activities. In addition, high volume of waste is generated by the marble production industry as 70% of marble is wasted during the production such as quarrying, cutting, processing and others which is environmental unfriendly. In a way to achieve sustainable construction, the present study is to utilise the waste marble in replacing the coarse aggregate in concrete production. The engineering performance including workability, compressive strength, ultrasonic pulse velocity (UPV) and chloride penetration were analysed. The raw waste marble obtained from the industry were crushed and sieved into maximum size 20 mm and used to replace the coarse aggregate at the level of 20%, 40%, 60%, 80% and 100% respectively. Results show that 60% of the replacement level has yield to optimum result by achieving the highest compressive strength and UPV at approximate 5% higher than the control. Meanwhile, the effect on chloride penetration resistance is more significant, i.e. approximate 19% better than the control. However, increasing the replacement level of waste marble has no significant effect on workability, although an increasing trend was observed.
    Matched MeSH terms: Construction Industry
  2. Ahmad Fuad Ab Ghani, Azrin Ahmad, Nor Salim Muhammad, Reduan Mat Dan, Rustamreen Jenal
    MyJurnal
    This study describes the review on maintenance related issues during design and construction stage
    within construction industry. The paper highlights the causes and errors made during design and
    construction stage and their impact during the operation/production/occupancy stage as well as the
    maintenance costs associated with it. The study identifies the mistakes in the working processes within
    design and construction stage leading to the errors that affect the durability, performance, reliability,
    maintainability, availability and safety of the systems. The paper presents a comprehensive review of
    the published literatures, journals, technical papers in the related areas in the construction field. The
    review highlights the new approaches and decision framework which link the designers and
    construction personnel that could reduce the errors and defects in construction which then lead to
    maintenance issues and asset management. The factors of accessibility, materials, design and
    documentation standardization have been discussed thoroughly for better understanding in improving
    maintenance and physical asset management in project commissioning.
    Matched MeSH terms: Construction Industry
  3. Mohammad Fazley Hossain, Chowdhury, Rusli, Bin Ahmad
    MyJurnal
    Like many other parts of the globe, in Malaysia, construction industry has a vital support to
    the national economy, even though statistics indicates that, at the same time, it is an extremely
    risky profession due to high accident rate. In addition, current evidences suggest that, in
    general, safety in Sarawak construction industries lack attention. As, human behavior is regarded
    as the principal component that contributes to accidents in this industry, this study
    intends to explore existing barriers in development and maintaining safety performance behavior
    as well as possible coping strategies. A qualitative analysis of in-depth interview (N=4)
    among different levels of professions within industries in Kuching, Sarawak reveals that,
    price sensitive subcontracting, short-term projects, irregular cash flow, dependency on larger
    companies, less managerial and supervisory engagement, and priority on progress alone create
    obstacles for safety behavior. On the other hand, possibly, the challenges can be managed
    through integration of safety into contracts as compliance, associated disbursement, and introducing
    incentives.
    Matched MeSH terms: Construction Industry
  4. Jimmus, Melsie Enn, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Construction Industry
  5. Jawatin, Easther Lynn Jolly, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Construction Industry
  6. Nur Dini Jamil, Adekunle Qudus Adeleke
    MyJurnal
    This paper assessed the relationship between team competency and design risk
    management among Kuantan construction industries. Similarly, a survey was
    conducted among 10 local and national construction industries in Kuantan with a
    stratified random sampling. The returned questionnaires yielded 10 responses which
    was used for data analysis. Five point Likert scale categories of risk management from
    the previous studies was used and statistical analysis affirmed that there is positive
    relationship between team competency and design risk management among Kuantan
    construction industries.
    Matched MeSH terms: Construction Industry
  7. Nur Fazlina Abdul Rahman, Adekunle Qudus Adeleke
    MyJurnal
    In this paper, the influence of effective communication in construction risk
    management among Kuantan Malaysian construction industries was assessed. Then a
    survey was conducted on pilot test among 10 local construction industries in Kuantan
    Malaysian, using stratified random sampling, out of which 10 questionnaires were
    collected for data analysis. Methodologically, this research is perhaps the first to
    study the influence of effective communication on construction risk management
    among Kuantan Malaysian construction industries. Using the five point Likert scale
    categories of risk management from previous studies. Pearson Correlation anaylysis
    output results affirmed that there is a strong positive relationship between effective
    communication and construction risk management among Kuantan construction
    industries.
    Matched MeSH terms: Construction Industry
  8. Nur Syafiqah Abdul Malik, Adekunle Qudus Adeleke
    MyJurnal
    This paper assessed the significant relationship between organizational culture and
    material risk among Kuantan Malaysian construction industries. Survey was
    conducted among 10 registered G7 contractors operating in Kuantan construction
    industry. Proportionate stratified random sampling was used out of which 10
    questionnaires were distributed for pilot study. Methodologically, this research is
    perhaps the first to assess the relationship between organizational culture and
    material risk among Malaysian construction industries with five point Likert scale
    categories of material risk from previous studies. Statistical analysis affirmed a
    significant positive relationship between organizational culture and material risk
    among Malaysian construction industries through Statistical Package for Social
    Sciences (SPSS).
    Matched MeSH terms: Construction Industry
  9. Nur A'shirah Mohd Azman, Adekunle Qudus Adeleke
    MyJurnal
    This paper assessed the effect of time overruns on apartment building among
    Kuantan Malaysian construction industries. A survey was conducted among 10
    construction industries in Kuantan Pahang. Using proportionate stratified random
    sampling, out of which 10 questionnaires were distributed for data analysis. Using
    five point Likert scale categories from previous studies, statistical analysis affirmed a
    significant positive relationship between time overruns and apartment building
    among Kuantan Malaysian construction industries.
    Matched MeSH terms: Construction Industry
  10. Nurushshahirah Sabodin, Adekunle Qudus Adeleke
    MyJurnal
    This paper examined the significant relationship between government regulation and
    construction waste management among Malaysian construction industries. Survey
    was conducted among 10 contractors registered G7, using proportionate stratified
    random sampling, out of which 10 questionnaire were collected for data analysis with
    five point Likert scale categories of waste management from previous studies,
    statistical analysis affirmed a significant positive relationship between government
    regulation and construction waste management in Malaysian construction industries
    through Statistical Package for the Social Sciences.
    Matched MeSH terms: Construction Industry
  11. Tahir, M.M., Haron, N.A., Alias, A.H., Harun, A.N., Muhammad, I.B., Baba, D.L.
    MyJurnal
    The control of cost and time in construction projects is one of the most important issues in construction since the emergence of the construction industry. A successful project should meet not only quality output standards, but also time and budget objectives. The management and control of cost and time in construction is fundamental in every project. An effective cost and time management and control technique for construction projects is important in managing risk of cost overrun and delay in completion of projects. Construction projects are becoming more complex as they now involve many stakeholders from different disciplines. The emergence of Building Information Model (BIM), an alternative technology is believed to solve issues related to project cost and time control as it efficiently increases collaboration between stakeholders. The aim of this paper is to review and summarise the causes of delay and cost overrun in construction industries, which are the main causes of disputes and abandonment of projects in the industry. It was found that delays and cost overrun eat deep into the industry and leave the construction industry with a bad image for decades even with rapid advancement in technology. The review of the applications of BIM showed that most of the applications are geared towards minimising construction cost and time spent on projects. This means that the use of BIM in the management of construction projects has great impact on project cost and time.
    Matched MeSH terms: Construction Industry
  12. Nik Anisah Nik Ngah, Maziah Muda, Ahmad Nasrul Hisyam Hamzah, Mohamad Awang, Kartini Kamaruddin
    MyJurnal
    Diverting waste material from landfill sites has a big implication for the creation of new markets and has environmental benefits through offsetting the need for the extraction of raw materials. Besides, the major attention especially in construction industry is the problem to make natural resources sustainable for three to four decades in future. However, in this study finely glass powder with pozzolanic properties is found to be a partial replacement for cement and can acts as filler in the microstructure of a mortar block. Thus, a study was conducted to see the effects of various proportions of windscreen glass waste powder (WGWP) in determining the degree of water absorption on mortar incorporated with WGWP and to determine the optimum replacement to the ordinary Portland cement (OPC) with WGWP. Several compositions of WGWP (0%, 5%, 10%, 15% and 20% by cement weight) of mortar cube sample were prepared and cured at 7, 28 and 60 days to undergo a water absorption test. From this research, it shows that the use of WGWP was found to be the best features pozzolanic enough to use as a partial replacement for cement and it can reduced the pores of mortar by blocking the large voids in the hydrated cement paste through pozzolanic reaction. In the term of water absorption, the lowest reading was achieved in 15% and it can be said that 15% replacement is the optimum replacement of OPC.
    Matched MeSH terms: Construction Industry
  13. Islam R, Nazifa TH, Yuniarto A, Shanawaz Uddin ASM, Salmiati S, Shahid S
    Waste Manag, 2019 Jul 15;95:10-21.
    PMID: 31351595 DOI: 10.1016/j.wasman.2019.05.049
    Associated with the continuing increase of construction activities such as infrastructure projects, commercial buildings and housing programs, Bangladesh has been experiencing a rapid increase of construction and demolition (C&D) waste. Till now, the generation rate of C&D waste has not been well understood or not explicitly documented in Bangladesh. This study aims to provide an approach to estimate C&D waste generation using waste generation rates (WGR) through regression analysis. Furthermore, analyses the economic benefit of recycling C&D waste. The results revealed that WGR 63.74 kg/m2 and 1615 kg/m2 for construction and demolition activities respectively. Approximately, in financial year (FY) 2016, 1.28 million tons (0.149 construction and 1.139 demolition) waste were generated in Dhaka city, of which the three largest proportions were concrete (60%), brick/block (21%) and mortar (9%). After collection they were dumped in either landfills or unauthorized places. Therefore, it can be summarized as: waste is a resource in wrong place. The results of this study indicate that rapid urbanization of Dhaka city would likely experience the peak in the generation of C&D waste. This paper thus designates that C&D waste recycling is an entrepreneurial activity worth venturing into and an opportunity for extracting economic and environmental benefits from waste. The research findings also show that recycling of concrete and brick waste can add economic value of around 44.96 million USD. In addition, recycling of C&D waste leads to important reductions in CO2 emissions, energy use, natural resources and illegal landfills. Therefore, the findings of WGR and economic values provide valuable quantitative information for the future C&D waste management exercises of various stakeholders such as government, industry and academy.
    Matched MeSH terms: Construction Industry*
  14. Mohajerani A, Hui SQ, Mirzababaei M, Arulrajah A, Horpibulsuk S, Abdul Kadir A, et al.
    Materials (Basel), 2019 Aug 07;12(16).
    PMID: 31394815 DOI: 10.3390/ma12162513
    Fibres have been used in construction materials for a very long time. Through previous research and investigations, the use of natural and synthetic fibres have shown promising results, as their presence has demonstrated significant benefits in terms of the overall physical and mechanical properties of the composite material. When comparing fibre reinforcement to traditional reinforcement, the ratio of fibre required is significantly less, making fibre reinforcement both energy and economically efficient. More recently, waste fibres have been studied for their potential as reinforcement in construction materials. The build-up of waste materials all around the world is a known issue, as landfill space is limited, and the incineration process requires considerable energy and produces unwanted emissions. The utilisation of waste fibres in construction materials can alleviate these issues and promote environmentally friendly and sustainable solutions that work in the industry. This study reviews the types, properties, and applications of different fibres used in a wide range of materials in the construction industry, including concrete, asphalt concrete, soil, earth materials, blocks and bricks, composites, and other applications.
    Matched MeSH terms: Construction Industry
  15. Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, et al.
    Materials (Basel), 2019 Sep 20;12(19).
    PMID: 31547011 DOI: 10.3390/ma12193052
    Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction are immense, promising extraordinary physical and chemical properties for modified construction materials. Among the many different types of nanoparticles, titanium dioxide, carbon nanotubes, silica, copper, clay, and aluminium oxide are the most widely used nanoparticles in the construction sector. The promise of nanoparticles as observed in construction is reflected in other adoptive industries, driving the growth in demand and production quantity at an exorbitant rate. The objective of this study was to analyse the use of nanoparticles within the construction industry to exemplify the benefits of nanoparticle applications and to address the short-term and long-term effects of nanoparticles on the environment and human health within the microcosm of industry so that the findings may be generalised. The benefits of nanoparticle utilisation are demonstrated through specific applications in common materials, particularly in normal concrete, asphalt concrete, bricks, timber, and steel. In addition, the paper addresses the potential benefits and safety barriers for using nanomaterials, with consideration given to key areas of knowledge associated with exposure to nanoparticles that may have implications for health and environmental safety. The field of nanotechnology is considered rather young compared to established industries, thus limiting the time for research and risk analysis. Nevertheless, it is pertinent that research and regulation precede the widespread adoption of potentially harmful particles to mitigate undue risk.
    Matched MeSH terms: Construction Industry
  16. Hussein Md Zan, Shapie, Sinatu Sadiah, Rahim Ishak, Md Saifuddin Yusop, Seri Rahayu Kama
    MyJurnal
    Precast concrete panel is one of the Industrial Building System (IBS) components currently used in modern construction industry, especially, in a highly populated urban area in Malaysia, owing to its cost and time efficiency in a project completion. However, the constraints lie in Musculoskeletal Disorders (MSDs) when IBS workers manually lift the concrete panel repeatedly. The aim of this study is to analyze the recommended weight limit (RWL), lifting index (LI) and physiological experience among workers while lifting precast concrete panel with 3300mm x 600mm size and compressive strength of 40MPa. The methods involved include a survey through the Nordic questionnaires, interview sessions, NIOSH lifting index calculation, recommended work limit calculation, Rapid Upper Limb Assessment (RULA) and video recording. The results yielded the MSDs problem. The guidelines of recommended weight limit and lifting index are produced. They benefit workers and increase their awareness on the MSDs issues.
    Matched MeSH terms: Construction Industry
  17. Beddu S, Abd Manan TSB, Zainoodin MM, Khan T, Wan Mohtar WHM, Nurika O, et al.
    Data Brief, 2020 Aug;31:105843.
    PMID: 32596432 DOI: 10.1016/j.dib.2020.105843
    Coal combustion by-products (CCPs) (i.e. fly (FA) and bottom (BA) ashes) generated by power plants contain heavy metals. This research presents leaching properties of coal ashes (FA and BA) collected from Jimah coal-fired power station, Port Dickson, Negeri Sembilan using USEPA standard methods namely toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP). Heavy metals like lead (Pb), zinc (Zn), copper (Cu) and arsenic (As) were quantified using atomic absorption spectrometer (AAS). The leached of heavy metals fluxes were Cu < Zn < Pb < As. As leached the most whilst indicating of possible contamination from As. Overall, the ranges of leached concentration were adhered to permissible limits of hazardous waste criteria for metal (Pb and As) and industrial effluent (Zn and Cu). The presented data has potential reuse as reference for the coal ash concrete mixed design application in construction industries.
    Matched MeSH terms: Construction Industry
  18. Fediuk R, Mugahed Amran YH, Mosaberpanah MA, Danish A, El-Zeadani M, Klyuev SV, et al.
    Materials (Basel), 2020 Oct 22;13(21).
    PMID: 33105753 DOI: 10.3390/ma13214712
    The incessant demand for concrete is predicted to increase due to the fast construction developments worldwide. This demand requires a huge volume of cement production that could cause an ecological issue such as increasing the rates of CO2 emissions in the atmosphere. This motivated several scholars to search for various alternatives for cement and one of such alternatives is called sulfur-based concrete. This concrete composite contributes to reduce the amount of cement required to make conventional concrete. Sulfur can be used as a partial-alternate binder to Ordinary Portland Cement (OPC) to produce sulfur-based concrete, which is a composite matrix of construction materials collected mostly from aggregates and sulfur. Sulfur modified concrete outperforms conventional concrete in terms of rapid gain of early strength, low shrinkage, low thermal conductivity, high durability resistance and excellent adhesion. On the basis of mentioned superior characteristics of sulfur-based concrete, it can be applied as a leading construction material for underground utility systems, dams and offshore structures. Therefore, this study reviews the sources, emissions from construction enterprises and compositions of sulfur; describes the production techniques and properties of sulfur; and highlights related literature to generate comprehensive insights into the potential applications of sulfur-based concrete in the construction industry today.
    Matched MeSH terms: Construction Industry
  19. Balasbaneh AT, Ramli MZ
    Environ Sci Pollut Res Int, 2020 Dec;27(34):43186-43201.
    PMID: 32734541 DOI: 10.1007/s11356-020-10141-3
    In recent years, off-site volumetric construction has been promoted as a viable strategy for improving the sustainability of the construction industry. Most prefabricated prefinished volumetric construction (PPVC) structures are composed of either steel or concrete; thus, it is imperative to carry out life cycle assessments (LCAs) for both types of structures. PPVC is a method by which free-standing volumetric modules-complete with finishes for walls, floors, and ceilings-are prefabricated and then transferred and erected on-site. Although many studies have examined these structures, few have combined economic and environmental life cycle analyses, particularly for prefinished volumetric construction buildings. The purpose of this study is to utilize LCA and life cycle cost (LCC) methods to compare the environmental impacts and costs of steel and concrete PPVCs "from cradle to grave." The results show that steel necessitates higher electricity usage than concrete in all environmental categories, while concrete has a higher emission rate. Steel outperforms concrete by approximately 37% in non-renewable energy measures, 38% in respiratory inorganics, 43% in land occupation, and 40% in mineral extraction. Concrete, on the other hand, performs 54% better on average in terms of measures adopted for greenhouse gas (GHG) emissions. Steel incurs a higher cost in the construction stage but is ultimately the more economical choice, costing 4% less than concrete PPVC owing to the recovery, recycling, and reuse of materials. In general, steel PPVC exhibits better performance, both in terms of cost and environmental factors (excluding GHG emissions). This study endeavors to improve the implementation and general understanding of PPVC.
    Matched MeSH terms: Construction Industry
  20. Shaharin Hamid, Che Maznah Mat Isa, Shamer N. Felix, Nur Kamaliah Mustaffa
    ESTEEM Academic Journal, 2020;16(1):47-58.
    MyJurnal
    Ineffective construction waste management has become a serious problem that impacted significantly to environmental pollutions especially in a developing country like Malaysia. Despite the enactment of law by the government, Malaysia is still far behind as compared to other countries like Denmark and Hong Kong in terms of implementation of recycling and reuse of construction waste. Recycling and reuse of waste materials seems to be a profitable method that will boost the
    lifetime of landfills and cut down the usage of virgin natural resources. This paper discusses the practices of recycling and reuse of construction waste materials in the Klang Valley. A questionnaire survey was administered to 117 respondents from construction companies. The most common types of construction waste materials that can be recycled and reused are concrete, metal, asphalt, brick, plastic, cardboard, timber and glass. A descriptive analysis using Relative Important Index (RII) was used to rank the items asked in the survey. It was found that the most frequent types of recycling and reuse of construction waste materials based on ranking is timber,
    while the key benefit of recycle and reuse of construction waste is reduction of landfill space. On the other hand, the key challenge that affects recycling and reuse of construction waste is the risk of contamination. This study is beneficial for all parties involved in construction activities to achieve a more sustainable construction in Malaysia and throughout the world.
    Matched MeSH terms: Construction Industry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links