Displaying publications 41 - 60 of 150 in total

Abstract:
Sort:
  1. Akib S, Liana Mamat N, Basser H, Jahangirzadeh A
    ScientificWorldJournal, 2014;2014:128635.
    PMID: 25247201 DOI: 10.1155/2014/128635
    The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles.
    Matched MeSH terms: Construction Materials/standards*
  2. Khandaker MU, Jojo PJ, Kassim HA, Amin YM
    Radiat Prot Dosimetry, 2012 Nov;152(1-3):33-7.
    PMID: 22887119 DOI: 10.1093/rpd/ncs145
    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
    Matched MeSH terms: Construction Materials/analysis
  3. Sallehan Ismail, Zaiton Yaacob
    MyJurnal
    The development of a new, low-cost building material that is composed of non-fired, pressed laterite bricks incorporating oil palm empty fruit bunches (OPEFB) fibre was investigated in this study. The main aim of this research was to study the physical and mechanical properties of laterite brick reinforced with OPEFB fibre, including dimensions, weight, density, water absorption and compressive strength. The tests were carried out according to BS 3921:1985 for water absorption and compressive strength tests. The mix proportion of the control bricks was 70% soil, 24% sand, and 6% cement. Meanwhile, the OPEFB fibre contents ranged from 1% to 5% by weight of cement. The specimens were taken from a total of 120 bricks. The findings withdrawn from this research were: firstly, the density of laterite bricks was decreased with the increase in the OPEFB fibre content of the bricks. Secondly, it was found that the addition of the OPEFB fibres improved the compressive strength of the bricks, and the maximum compressive strength determined in this study for bricks was with 3% fibre content. Finally, the water absorption results indicated a small increase in water absorption with the increase in the OPEFB fibre content in laterite bricks.
    Matched MeSH terms: Construction Materials
  4. Zhao X, Lim SK, Tan CS, Li B, Ling TC, Huang R, et al.
    Materials (Basel), 2015 Jan 30;8(2):462-473.
    PMID: 28787950 DOI: 10.3390/ma8020462
    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
    Matched MeSH terms: Construction Materials
  5. Noor Shafini Roslee, Salinah Dullah
    MyJurnal
    Globally, 998 million tonnes of agricultural waste is produced per year and in Malaysia, 1.2 million tonnes of agricultural waste is disposed of into landfills annually. Concurrently, increasing demands of concrete leads to vary of research conducted on improving cement production methods and formulating reduction or eliminate CO2 emissions.
    Matched MeSH terms: Construction Materials
  6. Imran HM, Akib S, Karim MR
    Environ Technol, 2013 Sep-Oct;34(17-20):2649-56.
    PMID: 24527626
    Uncontrolled stormwater runoff not only creates drainage problems and flash floods but also presents a considerable threat to water quality and the environment. These problems can, to a large extent, be reduced by a type of stormwater management approach employing permeable pavement systems (PPS) in urban, industrial and commercial areas, where frequent problems are caused by intense undrained stormwater. PPS could be an efficient solution for sustainable drainage systems, and control water security as well as renewable energy in certain cases. Considerable research has been conducted on the function of PPS and their improvement to ensure sustainable drainage systems and water quality. This paper presents a review of the use of permeable pavement for different purposes. The paper focuses on drainage systems and stormwater runoff quality from roads, driveways, rooftops and parking lots. PPS are very effective for stormwater management and water reuse. Moreover, geotextiles provide additional facilities to reduce the pollutants from infiltrate runoff into the ground, creating a suitable environment for the biodegradation process. Furthermore, recently, ground source heat pumps and PPS have been found to be an excellent combination for sustainable renewable energy. In addition, this study has identified several gaps in the present state of knowledge on PPS and indicates some research needs for future consideration.
    Matched MeSH terms: Construction Materials/analysis
  7. Ekarizan Shaffie1, Ahmad Kamil Arshad, Ramadhansyah Putra Jaya, Khairil Azman Masri, Wardati Hashim
    MyJurnal
    Moisture susceptibiltiy is one of the common types of pavement failure found in asphaltic pavements.
    Climatic factor such as temperature and moisture has a profound effect on the durability of hot mix
    asphalt pavements. Couple with high traffic loads/stresses made stripping of pavement materials
    inevitable. Thus, it has become necessary to improve the efficiency of the design of hot mix asphalt
    (HMA) for better performance and safe riding comfort. This study investigates and discusses the findings
    on the stripping performance of dense graded Superpave mixes using two type of binder; un-modified
    binder and rubber polymer modified binder (RPM) using Superpave mix design (AASHTO TP4)
    procedure. The RPM binder consists of 4% of both rubber crumb and EVA polymer. Modified Lottman
    and Resilient Modulus tests were used to evaluate the stripping performance in these mixtures and this
    study also documents the effect of different temperature on tensile strength ratio (TSR) and resilient
    modulus ratio (RMR) on the HMA mixtures. Experimental evidences show that the RPM binder mixes
    were found to have significantly improved the resistance to moisture damage compared to unmodified
    binder mixtures. The RPM binder application may able to alleviate problems related to aggregate
    stripping and potholes on our road. Statistical analysis showed good correlation between resilient
    modulus and tensile strength ratio.
    Matched MeSH terms: Construction Materials
  8. M Mhaya A, Baghban MH, Faridmehr I, Huseien GF, Abidin ARZ, Ismail M
    Materials (Basel), 2021 Apr 11;14(8).
    PMID: 33920340 DOI: 10.3390/ma14081900
    Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs' performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO4 and H2SO4 solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk.
    Matched MeSH terms: Construction Materials
  9. Laila Kalidah Junet, Zafri Azran Abdul Majid, Muhammad Syahmi Che Othaman
    MyJurnal
    Aluminum (Al) is a standard material that has been used as a filter for ionising radiation however for polyvinyl chloride (PVC) there is no solid evidence to support but has been recommended. PVC has been selected as a potential filter material due to it is a long lasting constructing material and very durable, which can be used in a variety of application. The purpose of this study was to observe the effect of PVC on entrance surface dose (ESD) values as compare to the standard X-ray filter of Al. The effect of varying thickness of the materials and difference exposure settings were observed and compared to each other. From this study, the percentage difference for both PVC and Al thickness is less than ± 25.00 % shows that PVC has a potential to be used as one of the filter materials due to its ability to reduce the ESD value
    Matched MeSH terms: Construction Materials
  10. Omar M. Isa
    Medical Health Reviews, 2009;2009(2):47-58.
    MyJurnal
    The consequence of postoperative infections associated with orthopaedic or biomaterial-associated implants is devastating to both the patients and the surgeons. Bacterial microcolonies adhere to the surface of implants, forming biofilms and then detaching part of itself into free-floating planktonic forms may be the cause of recurrent and persistent infections. These bacteria are very resistant towards antibiotics and require a higher drug concentration than usual in order to eradicate them. Quorem-sensing is regarded as one mechanism of communication or integration between these microorganisms in the biofilm and may even be in the transfer of resistant genes. Disruption of this pathway is regarded as one method of inhibiting its growth and formation. Implant design, technique and stability of fixation as well as the surface characteristics, the material and its biocompatibility may also influence bacterial adhesion. It has been suggested that multi-prong strategies such as prevention and disruption of biofilm formation, parenteral antibiotics, use of antibiotic-impregnated construction materials and altering the intrinsic properties of the implant surface may help to eradicate this menace.
    Matched MeSH terms: Construction Materials
  11. Karim MR, Hossain MM, Khan MNN, Zain MFM, Jamil M, Lai FC
    Materials (Basel), 2014 Dec 05;7(12):7809-7827.
    PMID: 28788277 DOI: 10.3390/ma7127809
    Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.
    Matched MeSH terms: Construction Materials
  12. Yin CY, Wan Ali WS, Lim YP
    J Hazard Mater, 2008 Jan 31;150(2):413-8.
    PMID: 17543446
    In this study, solidification/stabilization (S/S) of nickel hydroxide sludge using ordinary Portland cement (OPC) and oil palm ash (OPA) was carried out. The effects of increased substitution of OPA wt% in the S/S mix designs on the treated samples' physical and chemical characteristics were investigated. The physical characteristics studied were unconfined compressive strength (UCS) and changes in crystalline phases while chemical characteristics studied were leachability of nickel and leachate pH. Results indicated the optimum mix design for S/S of nickel hydroxide sludge using both OPC and OPA at B/S(d)=1 in terms of cost-effectiveness and treatment efficiency was 15 wt% OPA, 35 wt% OPC and 50 wt% sludge. The sufficient UCS and low leached nickel concentrations shown for this mix design indicate the viability of using OPA as substitute of OPC as it can significantly reduce cost normally incurred by usage of high amounts of OPC.
    Matched MeSH terms: Construction Materials*
  13. Ramli R, Fauzi A
    Saudi J Biol Sci, 2018 Mar;25(3):513-519.
    PMID: 29686514 DOI: 10.1016/j.sjbs.2016.01.017
    Black-shouldered Kite (Elanus caeruleus) is a well-known raptor that inhabits open areas such as oil palm plantation or paddy field. To determine preferable habitat and nesting site of Black-shouldered Kite in oil palm landscape, we conducted a study on Black-shouldered Kite's nesting biology in Carey Island, Selangor, Malaysia. We divided the island into six types of habitat and conducted road-side count of Black-shouldered Kite from April 2009 to February 2011. Whenever the Black-shouldered Kite was detected, we thoroughly searched the surrounding area for their nest. In total, we have recorded forty nests. The nests were built on 15 species of trees but most of the trees shared common physical characteristics. Some novice breeders also used oil palm tree as their nesting site. Structure and building materials of nests constructed on oil palm trees were different from nests built on other trees. Of all breeding attempts, only four nests which were located in residential area adjacent to young oil palm habitat were successful. Among important characteristics of successful nesting site include taller trees with strong branches and good leaf coverage. These trees not only protect nests from predator detection (except from other predatory birds) and physical environment but also facilitate Black-shouldered Kite's foraging activities by providing good vantage point.
    Matched MeSH terms: Construction Materials
  14. Amrani D, Tahtat M
    Appl Radiat Isot, 2001 Apr;54(4):687-9.
    PMID: 11225705
    Samples of natural and manufactured building materials collected from Algiers have been analysed for 226Ra, 232Th and 40K using a high-resolution HPGe gamma-spectrometry system. The specific concentrations for 226Ra, 232Th and 40K, from the selected building materials, ranged from (12-65 Bq kg(-1)), (7-51 B qkg(-1)) and (36-675 Bq kg(-1)), respectively. The measured activity concentrations for these natural radionuclides were compared with the reported data of other countries and with the world average activity of soil. Radium-equivalent activities were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. All building materials showed Ra(eq) activities lower than the limit set in the OECD report (370 Bq kg(-1)), equivalent to external gamma-dose of 1.5 mSv yr(-1).
    Matched MeSH terms: Construction Materials/analysis*
  15. Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, et al.
    Materials (Basel), 2019 Sep 20;12(19).
    PMID: 31547011 DOI: 10.3390/ma12193052
    Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction are immense, promising extraordinary physical and chemical properties for modified construction materials. Among the many different types of nanoparticles, titanium dioxide, carbon nanotubes, silica, copper, clay, and aluminium oxide are the most widely used nanoparticles in the construction sector. The promise of nanoparticles as observed in construction is reflected in other adoptive industries, driving the growth in demand and production quantity at an exorbitant rate. The objective of this study was to analyse the use of nanoparticles within the construction industry to exemplify the benefits of nanoparticle applications and to address the short-term and long-term effects of nanoparticles on the environment and human health within the microcosm of industry so that the findings may be generalised. The benefits of nanoparticle utilisation are demonstrated through specific applications in common materials, particularly in normal concrete, asphalt concrete, bricks, timber, and steel. In addition, the paper addresses the potential benefits and safety barriers for using nanomaterials, with consideration given to key areas of knowledge associated with exposure to nanoparticles that may have implications for health and environmental safety. The field of nanotechnology is considered rather young compared to established industries, thus limiting the time for research and risk analysis. Nevertheless, it is pertinent that research and regulation precede the widespread adoption of potentially harmful particles to mitigate undue risk.
    Matched MeSH terms: Construction Materials
  16. Andrew AM, Zakaria A, Mad Saad S, Md Shakaff AY
    Sensors (Basel), 2016;16(1).
    PMID: 26797617 DOI: 10.3390/s16010031
    In this study, an early fire detection algorithm has been proposed based on low cost array sensing system, utilising off- the shelf gas sensors, dust particles and ambient sensors such as temperature and humidity sensor. The odour or "smellprint" emanated from various fire sources and building construction materials at early stage are measured. For this purpose, odour profile data from five common fire sources and three common building construction materials were used to develop the classification model. Normalised feature extractions of the smell print data were performed before subjected to prediction classifier. These features represent the odour signals in the time domain. The obtained features undergo the proposed multi-stage feature selection technique and lastly, further reduced by Principal Component Analysis (PCA), a dimension reduction technique. The hybrid PCA-PNN based approach has been applied on different datasets from in-house developed system and the portable electronic nose unit. Experimental classification results show that the dimension reduction process performed by PCA has improved the classification accuracy and provided high reliability, regardless of ambient temperature and humidity variation, baseline sensor drift, the different gas concentration level and exposure towards different heating temperature range.
    Matched MeSH terms: Construction Materials
  17. Rasheed M, Jawaid M, Karim Z, Abdullah LC
    Molecules, 2020 Jun 18;25(12).
    PMID: 32570929 DOI: 10.3390/molecules25122824
    Bamboo fibers are utilized for the production of various structures, building materials, etc. and is of great significance all over the world especially in southeast Asia. In this study, the extraction of microcrystalline cellulose (MCC) was performed using bamboo fibers through acid hydrolysis and subsequently different characterizations were carried out using various advanced techniques. Fourier transform infrared (FTIR) spectroscopy analysis has indicated the removal of lignin from MCC extracted from bamboo pulp. Scanning Electron Microscopy (SEM) revealed rough surface and minor agglomeration of the MCC. Pure MCC, albeit with small quantities of impurities and residues, was obtained, as revealed by Energy Dispersive X-ray (EDX) analysis. X-ray diffraction (XRD) indicates the increase in crystallinity from 62.5% to 82.6%. Furthermore, the isolated MCC has slightly higher crystallinity compared to commercial available MCC (74%). The results of thermal gravimetric analysis (TGA) demonstrate better thermal stability of isolated MCC compared to its starting material (Bamboo fibers). Thus, the isolated MCC might be used as a reinforcing element for the production of green composites and it can also be utilized as a starting material for the production of crystalline nanocellulose in future.
    Matched MeSH terms: Construction Materials
  18. Oo, Z., Sujan, D., Rong Kimberly, F. P
    MyJurnal
    Aluminium titanate (AT) (Al2TiO5) is a promising engineering material because of its low thermal expansion coefficient, excellent thermal shock resistance, good refractoriness and non-wetting with most metals. Functionally graded material (FGM) is generally a particulate composite with continuously varying volume fractions. FGMs are alternative materials for dental implants, building materials and ballistic protection. It has been of great interest to future engines, internal combustion engines, metal cutting and other high temperature engineering application. There has been a demand for an adequate disc brake that requires less maintenance in the automotive manufacturing industry. FGM, the next evolution of layered structure, consists of graded compositions that are dispersed across the ceramic which produces a gradual improvement in the properties across the ceramic at a steady pace.
    Matched MeSH terms: Construction Materials
  19. Loganathan L, Yap SP, Lau BF, Nagapan M
    Environ Sci Pollut Res Int, 2023 Jun;30(26):69176-69191.
    PMID: 37133663 DOI: 10.1007/s11356-023-27256-y
    Replacing conventional fine aggregates with spent mushroom substrate (SMS) is aimed at developing a sustainable lightweight masonry mortar. It is also an alternative solution for the current improper mushroom waste disposals. Density, workability, compressive strength, specific strength, flexural strength, ultrasonic pulse velocity, water absorption, sorptivity, and equivalent CO2 emission in relation to sand reduction in mortars containing 2.5-15.0% (by volume) SMS passing through a 4.75-mm sieve were investigated. As the percentages of replacement increased from 2.5 to 15.0%, the density of the SMS mortar reduced up to 34.8%, with corresponding compressive strengths of 24.96 to 3.37 MPa. Mixes with up to 12.5% SMS met the minimum compressive and flexural strengths as stated in the ASTM C129 standard. In addition, the equivalent CO2 emission of the mixes reduced 15.09% as the SMS content increased while cost-effectiveness increases up to 98.15% until 7.5% SMS replacement. In conclusion, the use of SMS as fine aggregates up to 12.5% is a viable mix design strategy for producing sustainable lightweight mortar with a lower carbon emission.
    Matched MeSH terms: Construction Materials
  20. Zuraidah Salleh, Nik Rozlin Nik Masdek, Koay Mei Hyie, Syarifah Yunus
    MyJurnal
    Kenaf fibre is one of the natural fibers that has received much attention of many researchers because of its good properties and flexible use. Kenaf fibre composites have been proposed as interior building materials. In this study, the recycling effect on the kenaf PVC wall panel is focused. The main objective of this study is to determine the mechanical properties of different types of kenaf PVC wall panels. The samples were formulated based on the first and third recycling process. The specimens were subjected to several types of tests, namely, tensile, izod impact, flexural and hardness based on ASTM D3039, ASTM D256, ASTM D7264 and ASTM D785, respectively. The results indicate that the mechanical properties of the third recycled kenaf PVC wall panel product is better than the virgin and first recycled specimen. This shows that the recycling process enhances the mechanical properties of the product. On the other hand, the hardness of the specimen decreases after first recycling due to the reheating effect.
    Matched MeSH terms: Construction Materials
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links