Displaying publications 41 - 60 of 152 in total

Abstract:
Sort:
  1. Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, et al.
    PMID: 31380359 DOI: 10.3389/fbioe.2019.00168
    Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
    Matched MeSH terms: Drug Evaluation, Preclinical
  2. Abdul Kadir A, Abdul Kadir A, Abd Hamid R, Mat Jais AM, Omar J, Sadagatullah AN, et al.
    Biomed Res Int, 2019;2019:6979585.
    PMID: 31355276 DOI: 10.1155/2019/6979585
    Objectives: The objective of the study is to evaluate the chondroprotective activity of Channa striatus (Channa) and glucosamine sulphate (glucosamine) on histomorphometric examinations, serum biomarker, and inflammatory mediators in experimental osteoarthritis (OA) rabbit model.

    Design: Anterior cruciate ligament transection (ACLT) was performed to induce OA in thirty-three male New Zealand white rabbits and were randomly divided into three groups: Channa, glucosamine, and control group. The control group received drinking water and the Channa and glucosamine groups were orally administered with 51.4 mg/kg of Channa extract and 77.5 mg/kg of glucosamine sulphate in drinking water, respectively, for eight weeks and then sacrificed. The articular cartilage was evaluated macroscopically and histologically using semiquantitative and quantitative methods. Serum cartilage oligomeric matric protein (COMP), cyclooxygenase 2 (COX-2) enzyme, and prostaglandin E2 (PGE2) were also determined.

    Results: Macroscopic analysis revealed that Channa group have a significantly lower severity grade of total macroscopic score compared to the control (p < 0.001) and glucosamine (p < 0.05) groups. Semiquantitative histology scoring showed that both Channa and glucosamine groups had lower severity grading of total histology score compared to the control group (p < 0.001). In comparison with the control, Channa group had lower histopathological changes in three compartments of the joint compared to glucosamine group which had lower histological scoring in two compartments only. The cartilage thickness, area, and roughness of both Channa (p < 0.05) and glucosamine (p < 0.05) groups were superior compared to the control group. However, the Channa group demonstrated significantly less cartilage roughness compared to the glucosamine group (p < 0.05). Serum COMP levels were lower in both Channa (p < 0.05) and glucosamine (p < 0.05) groups compared to the control group.

    Conclusion: Both oral administration of Channa extract and glucosamine exhibited chondroprotective action on an ACLT OA-induced rabbit model. However, Channa was superior to glucosamine in maintaining the structure of the cartilage.

    Matched MeSH terms: Drug Evaluation, Preclinical
  3. Cheah, Pike-See, Mason, John O., Ling, King-Hwa
    MyJurnal
    The human brain is made up of billions of neurons and glial cells which are interconnected and organized into specific patternsof neural circuitry, and hence is arguably the most sophisticated organ in human, both structurally and functionally.Studying the underlying mechanisms responsible for neurologicalor neurodegenerativedisorders and the developmental basis of complex brain diseases such as autism, schizophrenia, bipolar disorder, Alzheimer’s and Parkinson’s disease has proven challenging due to practical and ethical limitations on experiments with human material and the limitationsof existing biological/animal models. Recently,cerebral organoids havebeen proposed as apromisingand revolutionary model for understanding complex brain disorders and preclinical drug screening.
    Matched MeSH terms: Drug Evaluation, Preclinical
  4. Al-Nema M, Gaurav A, Akowuah G
    Comput Biol Chem, 2018 Dec;77:52-63.
    PMID: 30240986 DOI: 10.1016/j.compbiolchem.2018.09.001
    The major complaint that most of the schizophrenic patients' face is the cognitive impairment which affects the patient's quality of life. The current antipsychotic drugs treat only the positive symptoms without alleviating the negative or cognitive symptoms of the disease. In addition, the existing therapies are known to produce extrapyramidal side effects that affect the patient adherence to the treatment. PDE10A inhibitor is the new therapeutic approach which has been proven to be effective in alleviating the negative and cognitive symptoms of the disease. A number of PDE10A inhibitors have been developed, but no inhibitor has made it beyond the clinical trials so far. Thus, the present study has been conducted to identify a PDE10A inhibitor from natural sources to be used as a lead compound for the designing of novel selective PDE10A inhibitors. Ligand and structure-based pharmacophore models for PDE10A inhibitors were generated and employed for virtual screening of universal natural products database. From the virtual screening results, 37 compounds were docked into the active site of the PDE10A. Out of 37 compounds, three inhibitors showed the highest affinity for PDE10A where UNPD216549 showed the lowest binding energy and has been chosen as starting point for designing of novel PDE10A inhibitors. The structure-activity-relationship studies assisted in designing of selective PDE10A inhibitors. The optimization of the substituents on the phenyl ring resulted in 26 derivatives with lower binding energy with PDE10A as compared to the lead compound. Among these, MA 8 and MA 98 exhibited the highest affinity for PDE10A with binding energy (-10.90 Kcal/mol).
    Matched MeSH terms: Drug Evaluation, Preclinical*
  5. Samat N, Ng MF, Ruslan NF, Okuda KS, Tan PJ, Patel V
    Assay Drug Dev Technol, 2018 10;16(7):408-419.
    PMID: 29985634 DOI: 10.1089/adt.2017.833
    Natural products are prolific producers of diverse chemical scaffolds, which have yielded several clinically useful drugs. However, the complex features of natural products present challenges for identifying bioactive molecules using high-throughput screens. For most assays, measured endpoints are either colorimetric or luminescence based. Thus, the presence of the major metabolites, tannins, and chlorophylls, in natural products could potentially interfere with these measurements to give either false-positive or false-negative hits. In this context, zebrafish phenotypic assays provide an alternative approach to bioprospect naturally occurring bioactive compounds. Whether tannins and/or chlorophylls interfere in zebrafish phenotypic assays, is unclear. In this study, we evaluated the interference potential of tannins and chlorophylls against efficacy of known small-molecule inhibitors that are known to cause phenotypic abnormalities in developing zebrafish embryos. First, we fractionated tannin-enriched fraction (TEF) and chlorophyll-enriched fraction (CEF) from Camellia sinensis and cotreated them with PD0325901 [mitogen-activated protein kinase-kinase (MEK) inhibitor] and sunitinib malate (SM; anti-[lymph]angiogenic drug). While TEF and CEF did not interfere with phenotypic or molecular endpoints of PD0325901, TEF at 100 μg/mL partially masked the antiangiogenic effect of SM. On the other hand, CEF (100 μg/mL) was toxic when treated up to 6 dpf. Furthermore, CEF at 100 μg/mL potentially enhanced the activity of γ-secretase inhibitors, resulting in toxicity of treated embryos. Our study provides evidence that the presence of tannin and/or chlorophyll in natural products do interfere with zebrafish phenotype assays used for identifying potential hits. However, this may be target/assay dependent and thus requiring additional optimization steps to assess interference potential of tannins and chlorophylls before performing any screening assay.
    Matched MeSH terms: Drug Evaluation, Preclinical
  6. Tajudeen Bale A, Mohammed Khan K, Salar U, Chigurupati S, Fasina T, Ali F, et al.
    Bioorg Chem, 2018 09;79:179-189.
    PMID: 29763804 DOI: 10.1016/j.bioorg.2018.05.003
    Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 1-13 and bis-chalcones 14-18 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ± 1.05-2.40 ± 0.09 µM as compared to the standard acarbose (IC50 = 1.04 ± 0.3 µM). Limited structure-activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.
    Matched MeSH terms: Drug Evaluation, Preclinical
  7. Karunakaran T, Ee GCL, Ismail IS, Mohd Nor SM, Zamakshshari NH
    Nat Prod Res, 2018 Jun;32(12):1390-1394.
    PMID: 28715912 DOI: 10.1080/14786419.2017.1350666
    Pure β-mangostin (1) was isolated from the stem bark of Garcinia mangostana L. One monoacetate (2) and five O-alkylated β-mangostin derivatives (3-7) were synthesised from β-mangostin. The structures of these compounds were elucidated and determined using spectroscopic techniques such as 1D NMR and MS. The cytotoxicities and anti-inflammatory activities of these five compounds against RAW cell 264.7 were tested. The structural-activity relationship studies indicated that β-mangostin showed a significant activity against the LPS-induced RAW cell 264.7, while the acetyl- as well as the O-alkyl- β-mangostin derivatives did not give good activity. Naturally occurring β-mangostin demonstrated comparatively better anti-inflammatory activity than its synthetic counterparts.
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  8. Agatonovic-Kustrin S, Kustrin E, Angove MJ, Morton DW
    J Chromatogr A, 2018 May 18;1550:57-62.
    PMID: 29615323 DOI: 10.1016/j.chroma.2018.03.054
    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity.
    Matched MeSH terms: Drug Evaluation, Preclinical/methods*
  9. Phan CW, Sabaratnam V, Yong WK, Abd Malek SN
    Nat Prod Res, 2018 May;32(10):1229-1233.
    PMID: 28539058 DOI: 10.1080/14786419.2017.1331226
    Chalcones are a group of compounds widely distributed in plant kingdom. The aim of this study was to assess the neurite outgrowth stimulatory activity of selected chalcones, namely helichrysetin, xanthohumol and flavokawin-C. Using adherent rat pheochromocytoma (PC12 Adh) cells, the chalcones were subjected to neurite outgrowth assay and the extracellular nerve growth factor (NGF) levels were determined. Xanthohumol (10 μg/mL) displayed the highest (p 
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  10. Munusamy K, Vadivelu J, Tay ST
    Rev Iberoam Micol, 2018 03 12;35(2):68-72.
    PMID: 29544734 DOI: 10.1016/j.riam.2017.07.001
    BACKGROUND: Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

    AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

    METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

    RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

    CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.

    Matched MeSH terms: Drug Evaluation, Preclinical
  11. Ganapathy R, Mani S, Hanumanth Rao BR, Tunku K, Ray B, Bhat A, et al.
    Front Biosci (Elite Ed), 2018 03 01;10:437-448.
    PMID: 29293467
    Thraatchathi Chooranam (TC), is a polyphenol-rich Indian traditional medicine. Present study was undertaken to investigate the effects of TC against H2O2 induced oxidative stress and apoptotic damage in H9C2 cardiomyocytes. Cell viability assay indicated relative safety (IC50= 488.10±12.04 mg/ml) of TC. Pretreatment of cells with TC upregulated anti-apoptotic Bcl2, and anti-oxidants TRX1 and TRXR and downregulated Bax and HIF-α and inflammatory genes iNOS and TNF-α. Together, these findings show that TC has both anti-oxidant and anti-apoptotic properties. Further studies may be considered to identify the bioactive principle(s) and precise mechanisms of action of TC.
    Matched MeSH terms: Drug Evaluation, Preclinical
  12. Abu Bakar AR, Manaharan T, Merican AF, Mohamad SB
    Nat Prod Res, 2018 Feb;32(4):473-476.
    PMID: 28391727 DOI: 10.1080/14786419.2017.1312393
    Ficus deltoidea leaves extract are known to have good therapeutic properties such as antioxidant, anti-inflammatory and anti-diabetic. We showed that 50% ethanol-water extract of F. deltoidea leaves and its pungent compounds vitexin and isovitexin exhibited significant (p drug for the treatment of diabetes.
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  13. Chua LS, Lau CH, Chew CY, Ismail NIM, Soontorngun N
    Phytomedicine, 2018 Jan 15;39:49-55.
    PMID: 29433683 DOI: 10.1016/j.phymed.2017.12.015
    BACKGROUND: Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market.

    PURPOSE: The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison.

    METHODS: The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks.

    RESULTS: The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique.

    CONCLUSION: O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be a good choice of herbal tea with comparable radical scavenging activity, but lower caffeine content than other tea samples.

    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  14. Phan CS, Kamada T, Kobayashi K, Hamada T, Vairappan CS
    Nat Prod Res, 2018 Jan;32(2):202-207.
    PMID: 28691521 DOI: 10.1080/14786419.2017.1346638
    A new xenicane diterpenoid, 15-deoxy-isoxeniolide-A (1) along with four known compounds 9-deoxy-isoxeniolide-A (2), isoxeniolide-A (3), xeniolide-A (4) and coraxeniolide-B (5) were isolated from the Bornean soft coral Xenia sp. The structures of these metabolites were elucidated on the basis of spectral analysis, NMR and HRESIMS. Compound 5 showed cytotoxic activity against ATL cell line, S1T.
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  15. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
    Matched MeSH terms: Drug Evaluation, Preclinical
  16. Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, et al.
    Sci Rep, 2017 12 05;7(1):16980.
    PMID: 29209017 DOI: 10.1038/s41598-017-17261-w
    Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  17. Choudhury H, Gorain B, Tekade RK, Pandey M, Karmakar S, Pal TK
    Regul Toxicol Pharmacol, 2017 Dec;91:179-189.
    PMID: 29080846 DOI: 10.1016/j.yrtph.2017.10.023
    Oral paclitaxel (PTXL) formulations freed from cremophor® EL (CrEL) is always in utmost demand by the cancerous patients due to toxicities associated with the currently marketed formulation. In our previous investigation [Int. J. Pharm. 2014; 460:131], we have developed an oral oil based nanocarrier for the lipophilic drug, PTXL to target bioavailability issue and patient compliance. Here, we report in vivo antitumor activity and 28-day sub-chronic toxicity of the developed PTXL nanoemulsion. It was observed that the apoptotic potential of oral PTXL nanoemulsion significantly inhibited the growth of solid tumor (59.2 ± 7.17%; p 
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  18. Jani NA, Sirat HM, Ahmad F, Mohamad Ali NA, Jamil M
    Nat Prod Res, 2017 Dec;31(23):2793-2796.
    PMID: 28278643 DOI: 10.1080/14786419.2017.1294172
    Hydrodistillation of the fresh stem and leaf of Neolitsea kedahense Gamble, collected from Gunung Jerai, Malaysia followed by the GC-FID and GC-MS analysis revealed the detection of a total of 47 constituents of which 28 (86.4%) from the stem and 31 (96.4%) constituents from the leaf. δ-Cadinene (17.4%), 1-epi-cubenol (11.8%), cyperotundone (9.0%), cis-cadin-4-en-7-ol (7.7%), τ-cadinol (7.1%) and α-cadinol (7.1%) were the principle constituents in the stem oil, whereas β-caryophyllene (18.9%), bicyclogermacrene (18.6%) and trans-muurola-4(14),5-diene (9.8%) were the major constituents in the leaf oil. Among the identified constituents, three constituents namely 7-epi-α-selinene, junenol and cis-cadin-4-en-7-ol have not been found previously from Neolitsea oils. The stem and leaf oils were screened for their α-glucosidase inhibitory and antibacterial activities. Both oils displayed potential α-glucosidase inhibitory activity, while the stem oil possessed weak antibacterial activity against Bacillus subtilis.
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  19. Wong KW, Ee GCL, Ismail IS, Karunakaran T, Jong VYM
    Nat Prod Res, 2017 Nov;31(21):2513-2519.
    PMID: 28412841 DOI: 10.1080/14786419.2017.1315717
    Phytochemical studies on the stem bark of Garcinia nervosa has resulted in the discovery of one new pyranoxanthone derivative, garner xanthone (1) and five other compounds, 1,5-dihydroxyxanthone (2), 6-deoxyisojacareubin (3), 12b-hydroxy-des-D-garcigerrin A (4) stigmasterol (5), and β-sitosterol (6). The structures of these compounds were elucidated with the aid of spectroscopic techniques, such as NMR and MS. The crude extracts of the plant were assessed for their antimicrobial activity.
    Matched MeSH terms: Drug Evaluation, Preclinical/methods
  20. Shariff KA, Tsuru K, Ishikawa K
    Mater Sci Eng C Mater Biol Appl, 2017 Jun 01;75:1411-1419.
    PMID: 28415432 DOI: 10.1016/j.msec.2017.03.004
    β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD.
    Matched MeSH terms: Drug Evaluation, Preclinical
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links