METHODS: The BDNF target sequence was detected on a capture probe attached on aluminum microcomb electrodes on the silicon wafer surface. A capture-target-reporter sandwich-type assay was performed to enhance the detection of the BDNF target.
RESULTS: The limit of detection was noticed to be 100 aM. Input of a reporter sequence at concentrations >10 aM improved the detection of the target sequence by enhancing changes in the generated currents. Control experiments with noncomplementary and single- and triple-mismatches of target and reporter sequences did not elicit changes in current levels, indicating the selective detection of the BDNF gene sequence.
CONCLUSION: The above detection strategy will be useful for the detection and quantification of BDNF, thereby aiding in the provision of suitable treatments for BDNF-related disorders.
RESULTS: From the characterization of physical properties, PCE-0.3 had an impressive amorphous porosity, wettability and 3D honeycomb-like structural morphology with a pore framework consisting of micropores and mesopores. According to the structural advantages of 3D hierarchical pores such as interconnected honeycombs, PCE-0.3 as supercapacitor electrode had a high specific capacitance of up to 285.89 F g-1 at 1 A. Furthermore, the supercapacitor exhibited high energy and power density of 21.54 Wh kg-1 and 161.13 W kg-1 , respectively, with a low internal resistance of 0.059 Ω.
CONCLUSION: The results indicated that 3D porous carbon materials such as interconnected honeycombs derived from the aromatic biomass of torch ginger leaves have significant potential for the development of sustainable energy storage devices. © 2023 Society of Chemical Industry.