Displaying publications 41 - 60 of 103 in total

Abstract:
Sort:
  1. How, Y. H., Ewe, J. A., Song, K. P., Kuan, C. H., Kuan, C. S., Yeo, S. K.
    MyJurnal
    The present work aimed to determine the antagonistic effect of probiotic-fermented soy against oral pathogens. Indigenous oral probiotics (Streptococcus salivarius Taylor’s Univer- sity Collection Centre (TUCC) 1251, S. salivarius TUCC 1253, S. salivarius TUCC 1254, S. salivarius TUCC 1255, and S. orisratti TUCC 1253) were incorporated into soy fermentation at 37°C for 24 h. Growth characteristics, β-glucosidase activity, and total isoflavones content of Streptococcus strains following soy fermentation were analysed. Antimicrobial test of Streptococcus-fermented soy was carried out against oral pathogens Enterococcus faecalis American Type Culture Collection (ATCC) 700802, Streptococcus pyogenes ATCC 19615, and Staphylococcus aureus ATCC 25923. Streptococcus strains showed a significant increase in growth following soy fermentation. S. salivarius TUCC 1253-fermented soy showed signif- icantly higher extracellular β-glucosidase activity and amount of aglycones. S. salivarius TUCC 1253-fermented soy showed antimicrobial effect against all oral tested pathogens in both aerobic and anaerobic conditions. These results showed that S. salivarius TUCC 1253-fermented soy could potentially be used as a preventive action or alternative treatment for oral infections.

    Matched MeSH terms: Enterococcus faecalis
  2. Ibrahim, N.Z., Abdullah, M.
    Ann Dent, 2008;15(1):20-26.
    MyJurnal
    This study aim to evaluate antimicrobial efficacy of sodium hypochlorite (NaOCl) and ozonated water against Enterococci faecalis biofilm. The bacterial biofilm was exposed to 2.62%, 1.31% NaOCl and 0.1 ppm ozonated water over a range of time periods. The presence of viable cells was determined by enumeration of colony forming units (CFU). All experiments were repeated four times (n=4). The effectiveness of the agents was compared using nonparametric Kruskal- Wallis test. The result revealed that 2.62% of NaOCl can completely kill E. faecalis biofilm in 15 minutes whereas 1.31 % NaOCl required a longer time to produce such effect. 0.1 ppm ozonated, however, did not exhibit any antimicrobial effect within the period of time tested. From this study, it can be concluded that 0.1 ppm ozonated water was not comparable with 2.62% and 1.31% NaOCl in antimicrobial efficacy against E. faecalis biofilm.
    Matched MeSH terms: Enterococcus faecalis
  3. Ismail IH, Al-Bayaty FH, Yusof EM, Gulam Khan HBS, Hamka FA, Azmi NA
    J Conserv Dent, 2021 02 10;23(5):489-496.
    PMID: 33911359 DOI: 10.4103/JCD.JCD_528_20
    Introduction: Enterococcus faecalis can be found in failed endodontic treatment (FET) even after performing primary endodontic treatment (PET). Calcium hydroxide (Ca(OH)2) cannot fully eliminate this microorganism during PET. Brazilian green propolis (bee glue) was found to be more effective against E. faecalis when compared to Ca(OH)2. A much less studied Malaysian geopropolis (MP) as well as Aloe vera (AV) is antibacterial but is unknown against E. faecalis.

    Objective: The objective of this study is to determine the antimicrobial effects of MP, AV, and MP + AV in comparison with Ca(OH)2 against E. faecalis, as an intracanal medicament.

    Materials and Methods: Antimicrobial activity of MP, AV, MP + AV, Ca(OH)2, and dimethyl sulfoxide was tested against E. faecalis using antimicrobial sensitivity testing, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The results were analyzed by Kruskal-Wallis test with Mann-Whitney post hoc test and repeated measures analysis of variance with Bonferroni post hoc test (P < 0.05).

    Results: For agar well-diffusion method, MP + AV gave maximum inhibition zone diameter (mean: 8.11 ± 0.015 mm), MP (mean: 6.21 ± 0.046 mm, Ca(OH)2 (mean: 5.5 ± 0.006), and AV (mean: 5.05 ± 0.012) with P < 0.05. MIC for MP + AV was 2 mg/ml, MP at 8 mg/ml, Ca(OH)2 at 8 mg/ml, and AV at 16 mg/ml. The MBC for MP + AV is at 4 mg/ml, MP at 16 mg/ml, Ca(OH)2 at 16 mg/ml, and AV at 32 mg/ml.

    Conclusion: The combination of MP and AV consistently showed better antimicrobial activity compared to MP and AV alone against E. faecalis. The findings suggest that MP and AV used in combination may be an ideal intracanal medicament in FET and PET.

    Matched MeSH terms: Enterococcus faecalis
  4. Ismail NA, Shameli K, Wong MM, Teow SY, Chew J, Sukri SNAM
    Mater Sci Eng C Mater Biol Appl, 2019 Nov;104:109899.
    PMID: 31499959 DOI: 10.1016/j.msec.2019.109899
    In this study, a comparative study of effect using honey on copper nanoparticles (Cu-NPs) via simple, environmentally friendly process and inexpensive route was reported. Honey and ascorbic acid act as stabilizing and reducing agents with the assistance of sonochemical method. The products were characterized using UV-visible (UV-vis) spectroscopy, X-Ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The reddish brown colour demonstrated the formation of Cu-NPs and UV-visible proved the plasmon resonance of Cu-NPs. XRD also confirmed a highly pure Cu-NPs obtained with absence of copper oxide in which the structure is crystalline. The spherical size of the Cu-NPs was acquire in the presence of honey which is 3.68 ± 0.78 nm with narrow particle distribution. The antibacterial activity was seen against gram-positive and gram-negative bacteria which are Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli). At higher concentration of Cu-NPs, they were more effective in killing both bacteria. The Cu-NPs without and with honey exhibited toxicities toward normal and cancerous cells. However, Cu-NPs without honey showed more potent killing activity against normal and cancer cells.
    Matched MeSH terms: Enterococcus faecalis/drug effects
  5. Jayamalar R, Parasakthi N, Puthucheary SD
    Med J Malaysia, 1987 Dec;42(4):264-8.
    PMID: 3136302
    Drug abuse is a major problem in Malaysia. Serious complications of intravenous drug addiction include septicaemia and infective endocarditis. We present nine cases of endocarditis occuring amongst drug abusers. The tricuspid valve was most frequently involved and the common aetiological organisms were S. aureus and Str. faecalis. There was a high mortality rate of 67% in our study, inspite of appropriate therapy. Early recognition of the disease and aggressive treatment is required to improve the associated mortality.
    Matched MeSH terms: Enterococcus faecalis
  6. Kahieshesfandiari M, Nami Y, Lornezhad G, Kiani A, Javanmard A, Jaymand M, et al.
    J Appl Microbiol, 2021 Nov;131(5):2516-2527.
    PMID: 33817937 DOI: 10.1111/jam.15098
    AIMS: The streptococcal disease has been associated with serious mortality and significant global economic loss in the tilapia farming industry. The overall goal of this work was to test herbal hydrogels based on encapsulated Enterococcus faecium ABRIINW.N7 for potential probiotic anti-microbial activity against Streptococcus iniae in red hybrid tilapia.

    METHODS AND RESULTS: Abnormal behaviour, clinical signs, postinjection survival and histopathology (kidney, liver, eye and brain) were measured. Cumulative mortality of CON+ , free cells, ALG and treatments (F1-F7) was 30, 24, 22, 19, 17, 17, 16, 14, 14 and 12 out of 30 fish and the survival rates for E. faecium ABRIINW.N7 microencapsulated in an alginate-BS blend with 0·5, 1, 1·5, 2, 2·5 and 3% fenugreek were 43, 43, 47, 53, 53 and 60%, respectively. After the incorporation of fenugreek with the alginate-BS blend, there was an 8-21% increase in probiotic cell viability. Furthermore, the survival rate for the alginate-BS blend with 2·5 and 3% fenugreek (F6 and F7) was significantly (P ≤ 0·05) higher than other blends. The highest encapsulation efficiency, viability in gastrointestinal conditions and during storage time and excellent antipathogenicity against S. iniae were observed in alginate-BS +3% fenugreek formulation (F7).

    CONCLUSIONS: It is recommended that probiotic strains like E. faecium ABRIINW.N7 in combination with local herbal gums, such as BS and fenugreek plus alginate, can be used as a suitable scaffold and an ideal matrix for the encapsulation of probiotics.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study proposes models connecting process parameters, matrix structure and functionality.

    Matched MeSH terms: Enterococcus faecium*
  7. Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, et al.
    BMC Oral Health, 2021 03 12;21(1):116.
    PMID: 33711992 DOI: 10.1186/s12903-021-01470-x
    BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin.

    METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.

    RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.

    CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.

    Matched MeSH terms: Enterococcus faecalis
  8. Lau CP, Abdul-Wahab MF, Jaafar J, Chan GF, Abdul Rashid NA
    J Microbiol Immunol Infect, 2017 Aug;50(4):427-434.
    PMID: 26427880 DOI: 10.1016/j.jmii.2015.08.004
    BACKGROUND/PURPOSE: Currently, silver nanoparticles (AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1.

    METHODS: Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L.

    RESULTS: The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration.

    CONCLUSION: Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes.

    Matched MeSH terms: Enterococcus/drug effects*; Enterococcus/isolation & purification; Enterococcus/physiology
  9. Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z
    Environ Sci Pollut Res Int, 2013 Jul;20(7):5056-66.
    PMID: 23334551 DOI: 10.1007/s11356-013-1476-5
    Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
    Matched MeSH terms: Enterococcus faecalis/metabolism*
  10. Lim SY, Yap KP, Teh CS, Jabar KA, Thong KL
    Infect Genet Evol, 2017 04;49:55-65.
    PMID: 28039075 DOI: 10.1016/j.meegid.2016.12.029
    Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains.
    Matched MeSH terms: Enterococcus faecium/classification; Enterococcus faecium/drug effects; Enterococcus faecium/genetics*; Enterococcus faecium/pathogenicity*
  11. Lim SY, Teh CSJ, Thong KL
    OMICS, 2017 10;21(10):592-602.
    PMID: 29049010 DOI: 10.1089/omi.2017.0119
    Enterococcus faecium is an opportunistic pathogen with a remarkable ability to acquire resistance toward multiple antibiotics, including those of last-resort drugs such as vancomycin and daptomycin. The occurrence of vancomycin-resistant E. faecium is on the rise and there is a need to understand the virulence of this organism. One of the factors that contributes to the virulence is the ability to form biofilms. Since bacteria in biofilm state are more resistant to antibiotics and host immune response, understanding the molecular mechanism of biofilm development is important to control biofilm-related diseases. The aim of this study was to determine the global gene expression profiles of an E. faecium strain, VREr5, during the early event of sessile growth compared with its planktonic phase through RNA-sequencing approach. The results clearly illustrated distinct expression profiles of the planktonic and biofilm cells. A total of 177 genes were overexpressed in the biofilm cells. Most of them encode for proteins involved in adherence, such as the ebpABCfm locus. Genes associated with plasmid replication, gene exchange, and protein synthesis were also upregulated during the early event of biofilm development. Furthermore, the transcriptome analysis also identified genes such as fsrB, luxS, and spx that might suppress biofilm formation in VREr5. The putative biofilm-related bee locus was found to be downregulated. These new findings could provide caveats for future studies on the regulation and maintenance of biofilm and development of biomarkers for biofilm-related diseases.
    Matched MeSH terms: Enterococcus faecium/genetics*
  12. Liong MT
    Nutr Rev, 2008 Apr;66(4):192-202.
    PMID: 18366533 DOI: 10.1111/j.1753-4887.2008.00024.x
    The long history of safety has contributed to the acceptance of probiotics as a safe food adjunct. Consequently, many probiotic products and their applications have been granted GRAS (generally regarded as safe) status. However, this classification has been frequently generalized for all probiotic strains regardless of their application. Cases of probiotics from the genera Lactobacillus, Leuconostoc, Pediococcus, Enterococcus, and Bifidobacterium have been isolated from infection sites, leading to the postulation that these probiotics can translocate. Probiotic translocation is difficult to induce in healthy humans, and even if it does occur, detrimental effects are rare. Despite this, various reports have documented health-damaging effects of probiotic translocation in immunocompromised patients. Due to probiotics' high degree of safety and their morphological confusion with other pathogenic bacteria, they are often overlooked as contaminants and are least suspected as pathogens. However, the antibiotic resistance of some strains has increased the complexity of their eradication. Probiotic translocation and infection deserve further investigation and should become a facet of safety assessment so the negative effects of probiotics do not outweigh the benefits.
    Matched MeSH terms: Enterococcus/physiology
  13. Loong SK, Lim FS, Khoo JJ, Lee HY, Suntharalingam C, Ishak SN, et al.
    Trop Biomed, 2020 Sep 01;37(3):803-811.
    PMID: 33612793 DOI: 10.47665/tb.37.3.803
    Ticks are vectors of bacteria, protozoa and viruses capable of causing serious and life threatening diseases in humans and animals. Disease transmission occurs through the transfer of pathogen from tick bites to susceptible humans or animals. Most commonly known tick-borne pathogens are obligate intracellular microorganisms but little is known on the prevalence of culturable pathogenic bacteria from ticks capable of growth on artificial nutrient media. One hundred and forty seven ticks originating from dairy cattle, goats and rodents were collected from nine selected sites in Peninsular Malaysia. The culture of surfacesterilized tick homogenates revealed the isolation of various pathogenic bacteria including, Staphylococcus sp., Corynebacterium sp., Rothia sp., Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli and Bacillus sp. and its derived genera. These pathogens are among those that affect humans and animals. Findings from this study suggest that in addition to the regular intracellular pathogens, ticks could also harbor extracellular pathogenic bacteria. Further studies, hence, would be needed to determine if these extracellular pathogens could contribute to human or animal infection.
    Matched MeSH terms: Enterococcus faecalis; Enterococcus
  14. Luddin N, Ahmed HM
    J Conserv Dent, 2013 Jan;16(1):9-16.
    PMID: 23349569 DOI: 10.4103/0972-0707.105291
    Complete debridement and disinfection of the root canal system are fundamental requirements for successful endodontic treatment. Despite the morphological challenges of the internal root anatomy, root canal irrigants play an important role in the optimization of the root canal preparation, which is essentially a chemo-mechanical procedure. Enterococcus faecalis is one of the most resistant microorganisms that dominants the microbial ecosystem of persistent periradicular lesions in retreatment cases. For that reason, many in vitro and in vivo studies evaluated and compared the antibacterial activity of sodium hypochlorite and chlorhexidine at varying concentrations using different experimental models against this microorganism. However, many controversies with regard to the ideal irrigant and concentration do in fact exist. Hence, this review aims to discuss the antibacterial activity of these two main root canal irrigants against Enterococcus faecalis using the agar diffusion and direct contact methods and the possible modulating factors responsible for inconsistent findings among different studies. In addition, the disinfection potential of both chemical agents on gutta percha and Resilon cones are also discussed. The source of this review was conducted through an electronic literature search using PubMed database from December 1997 until December 2011, which analyze the related laboratory investigations of both irrigants, published in major endodontic journals.
    Matched MeSH terms: Enterococcus faecalis
  15. Masduki F, Y JM, Min CC, Karim M
    Curr Microbiol, 2020 Dec;77(12):3962-3968.
    PMID: 33025182 DOI: 10.1007/s00284-020-02228-4
    In this study, we aimed to isolate, identify and characterize lactic acid bacteria (LAB) from the intestine of juvenile seabass (Lates calcarifer) as a new potential probiotic. Four strains of LABs were isolated from the intestines of ten healthy seabass juveniles. In the in vitro screening process using spot lawn assay, one isolate labeled as LAB3 showed inhibitory activity against Vibrio harveyi (ATCC 35,084). Strain LAB3 was determined to belong to the gram positive bacteria group with cocci shape and was identified as Enterococcus hirae using 16S rDNA analysis. This bacterium was able to grow at pH ranging from pH 2 to 10 with the best growth at pH 7. This strain was also able to grow at 0-4% NaCl after 24 h incubation and grew best at 1.5% NaCl. Enterococcus hirae strain LAB3 of the present study is worthy to be further characterized as a potential probiotic for use in seabass culture.
    Matched MeSH terms: Enterococcus hirae
  16. Mastor NN, Subbiah VK, Bakar WNWA, Begum K, Alam MJ, Hoque MZ
    Data Brief, 2020 Dec;33:106370.
    PMID: 33102652 DOI: 10.1016/j.dib.2020.106370
    Enterococcus gallinarum is a gram positive facultatively anaerobic bacteria that is typically found in mammalian intestinal tracts. It is generally not considered pathogenic to humans and is rarely reported. Here, we present the draft genome sequence data of Enterococcus gallinarum strain EGR748 isolated from a human clinical sample, and sequenced using the Illumina HiSeq 4000 system. The estimated whole genome size of the strain was 3,730,000 bp with a G + C content of 40.43%. The de novo assembly of the genome generated 55 contigs with an N50 of 208,509 bp. In addition, the Maximum Likelihood phylogenetic analysis based on the 16S rRNA sequence data accurately clustered EGR748 with other E. gallinarum strains. The data may be useful to demonstrate the capacity of this enterococcal species becoming the causal agents of nosocomial blood-stream infections. The genome dataset has been deposited at DDBJ/ENA/GenBank under the accession number JAABOR000000000.
    Matched MeSH terms: Enterococcus
  17. Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed AB
    J Mater Sci Mater Med, 2014 Aug;25(8):1925-39.
    PMID: 24831081 DOI: 10.1007/s10856-014-5228-y
    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
    Matched MeSH terms: Enterococcus faecium/drug effects
  18. Mogana R, Adhikari A, Tzar MN, Ramliza R, Wiart C
    BMC Complement Med Ther, 2020 Feb 14;20(1):55.
    PMID: 32059725 DOI: 10.1186/s12906-020-2837-5
    BACKGROUND: Canarium patentinervium leaves are used by the local indigenous people of Malaysia for wound healing. The current study is undertaken to screen the comprehensive antibacterial activity of the leaves and barks extracts, fractions and isolated compounds from this plant. Bioassay guided fractionation was also undertaken to deeply evaluate the antibacterial activity of the water fraction of the leaves extract. This is to provide preliminary scientific evidence to the ethnopharmacology usage of this plant by investigating antibacterial properties of the plant and its isolated constituents.

    METHODS: Bio-assay guided fractionation and subsequent isolation of compounds using open column chromatography. The antibacterial activity against gram positive and gram negative ATCC strain and resistant clinical strains were evaluated using microtiter broth dilution method to determine minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assay. The chemical structure of the isolated compounds from the water fraction of the ethanol extract of leaves was elucidated using Nuclear Magnetic Resonance (NMR).

    RESULTS: The ethanol extract of the leaves and barks showed antimicrobial activity against all four ATCC and eight clinical isolates. The ethanol extract of the leaves and the corresponding water fraction had good activity against MRSA S. aureus. (MIC: 250 μg/ml) and had bactericidal effect on eight of the clinical strains (MSSA,MRSA, oxacillin-resistant CONS, oxacillin-sensitive CONS, Enterococcus faecalis, Klebsiela species, Kleb pneumoniae ESBL and Candida parapsilosis). Further phytochemical investigation of the water fraction of the crude ethanol extract of leaves afforded compound 7 (hyperin) and compound 8 (cynaroside) that had bactericidal activity against tested bacterial species (MIC 50 μg/ml and 100 μg/ml). The two compounds were isolated from this genus for the first time.

    CONCLUSIONS: These results may provide a rational support for the traditional use of Canarium patentinervium Miq. in infections and wound healing, since the antimicrobial compounds isolated were also present in the leaves extract.

    Matched MeSH terms: Enterococcus faecalis
  19. Moreno MR, Leisner JJ, Tee LK, Ley C, Radu S, Rusul G, et al.
    J Appl Microbiol, 2002;92(1):147-57.
    PMID: 11849339
    Isolation of bacteriocinogenic lactic acid bacteria (LAB) from the Malaysian mould-fermented product tempeh and characterization of the produced bacteriocin(s).
    Matched MeSH terms: Enterococcus faecium/drug effects; Enterococcus faecium/genetics; Enterococcus faecium/growth & development; Enterococcus faecium/isolation & purification*; Enterococcus faecium/metabolism
  20. Moussa AA, Md Nordin AF, Hamat RA, Jasni AS
    Infect Drug Resist, 2019;12:3269-3274.
    PMID: 31695445 DOI: 10.2147/IDR.S219544
    Background: Enterococcus faecium and Enterococcus faecalis are among the predominant species causing hospital-acquired infections. Currently, enterococcal infections are treated using combination therapy of an aminoglycoside with cell-wall active agents, which led to high level aminoglycoside resistance (HLAR) and vancomycin resistance (VRE) among enterococci. The aim of this study was to determine the prevalence of HLAR and the distribution of the resistance genes among clinical E. faecalis and E. faecium isolates in Malaysia.

    Materials and methods: Seventy-five enterococci isolates recovered from different clinical sources were re-identified by subculturing on selective medium, Gram staining, biochemical profiling (API 20 Strep), and 16s rRNA sequencing. Antimicrobial susceptibility testing (AST) was performed using Kirby-Bauer disc diffusion, E-test, and broth microdilution methods. PCR amplification was used to detect the presence of aminoglycoside modifying enzyme (AME) genes [aac(6')-Ie-aph(2")-Ia, aph(2")-Ib, aph(2")-Ic, aph(2")-Id, aph(3')-IIIa]. Descriptive data analysis was used to analyze the antibiotic susceptibility profiles and the distribution of HLAR genes.

    Results: The majority of the isolates recovered from the clinical samples are E. faecalis (66.7%), with the highest recovery from the pus. The prevalence of HLGR (51%) is higher when compared to HLSR (45-49%). Analysis of the resistance genes showed that bifunctional genes aac(6')-Ie-aph(2")-Ia and aph(3')-IIIa contributed to the HLAR E. faecalis and E. faecium. The other AME genes [aph(2")-Ib, aph(2")-Ic, aph(2")-Id] were not detected in this study.

    Conclusion: This study provides the first prevalence data on HLAR and the distribution of the AME genes among E. faecalis and E. faecium isolates from Malaysia. These highlight the need for continued antibiotic surveillance to minimize its emergence and further dissemination.

    Matched MeSH terms: Enterococcus faecalis; Enterococcus; Enterococcus faecium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links