Displaying publications 41 - 60 of 291 in total

Abstract:
Sort:
  1. Looi LJ, Aris AZ, Yusoff FM, Isa NM, Haris H
    Environ Geochem Health, 2019 Feb;41(1):27-42.
    PMID: 29982907 DOI: 10.1007/s10653-018-0149-1
    Sediment can accumulate trace elements in the environment. This study profiled the magnitude of As, Ba, Cd, Co, Cu, Cr, Ni, Pb, Se, and Zn pollution in surface sediments of the west coast of Peninsular Malaysia. Trace elements were digested using aqua regia and were analyzed using the inductively coupled plasma-mass spectrometry. The extent of elemental pollution was evaluated using with the enrichment factor (EF) and geoaccumulation index (Igeo). This study found that the elemental distribution in the sediment in descending order was Zn > Ba > Cr > Pb > Cu > As > Ni > Co > Se > Cd. Zn concentrations in all samples were below the interim sediment quality guideline (ISQG) (124 mg/kg). In contrast, Cd concentrations (2.34 ± 0.01 mg/kg) at Station 31 (Merlimau) exceeded the ISQG (0.70 mg/kg), and the concentrations of As in the samples from Station 9 (Tanjung Dawai) exceeded the probable effect level (41.60 mg/kg). The Igeo and EF revealed that Station 9 and Station 31 were extremely enriched with Se and Cd, respectively. All stations posed low ecological risk, except Station 31, which had moderate ecological risk. The outputs from this study are expected to provide the background levels of pollutants and help develop regional sediment quality guideline values. This study is also important in aiding relevant authorities to set priorities for resources management and policy implementation.
    Matched MeSH terms: Environmental Monitoring/methods*
  2. Shafie NA, Aris AZ, Zakaria MP, Haris H, Lim WY, Isa NM
    PMID: 23043340 DOI: 10.1080/10934529.2012.717810
    An investigative study was carried out in Langat River to determine the heavy metal pollution in the sediment with 22 sampling stations selected for the collection of sediment samples. The sediment samples were digested and analyzed for extractable metal ((48)Cd, (29)Cu, (30)Zn, (33)As, (82)Pb) using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Parameters, such as pH, Eh, electrical conductivity (EC), salinity, cation exchange capacity (CEC) and loss on ignition (LOI) were also determined. The assessment of heavy metal pollution was derived using the enrichment factors (EF) and geoaccumulation index (I(geo)). This study revealed that the sediment is predominantly by As > Cd > Pb > Zn > Cu. As recorded the highest EF value at 187.45 followed by Cd (100.59), Pb (20.32), Zn (12.42) and Cu (3.46). This is similar to the I(geo), which indicates that the highest level goes to As (2.2), exhibits moderately polluted. Meanwhile, Cd recorded 1.8 and Pb (0.23), which illustrates that both of these elements vary from unpolluted to moderately polluted. The Cu and Zn levels are below 0, which demonstrates background concentrations. The findings are expected to update the current status of the heavy metal pollution as well as creating awareness concerning the security of the river water as a drinking water source.
    Matched MeSH terms: Environmental Monitoring/methods*
  3. Bakhshipour Z, Huat BB, Ibrahim S, Asadi A, Kura NU
    ScientificWorldJournal, 2013;2013:629476.
    PMID: 24501583 DOI: 10.1155/2013/629476
    This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems.
    Matched MeSH terms: Environmental Monitoring/methods*
  4. Wan Ibrahim WA, Abd Ali LI, Sulaiman A, Sanagi MM, Aboul-Enein HY
    Crit Rev Anal Chem, 2014;44(3):233-54.
    PMID: 25391563 DOI: 10.1080/10408347.2013.855607
    The progress of novel sorbents and their function in preconcentration techniques for determination of trace elements is a topic of great importance. This review discusses numerous analytical approaches including the preparation and practice of unique modification of solid-phase materials. The performance and main features of ion-imprinting polymers, carbon nanotubes, biosorbents, and nanoparticles are described, covering the period 2007-2012. The perspective and future developments in the use of these materials are illustrated.
    Matched MeSH terms: Environmental Monitoring/methods
  5. Ooi L, Okazaki K, Arias-Barreiro CR, Heng LY, Mori IC
    Chemosphere, 2020 May;247:125933.
    PMID: 32079055 DOI: 10.1016/j.chemosphere.2020.125933
    Toxicity Identification Evaluation (TIE) is a useful method for the classification and identification of toxicants in a composite environment water sample. However, its extension to a larger sample size has been restrained owing to the limited throughput of toxicity bioassays. Here we reported the development of a high-throughput method of TIE Phase I. This newly developed method was assisted by the fluorescence-based cellular oxidation (CO) biosensor fabricated with roGFP2-expressing bacterial cells in 96-well microplate format. The assessment of four river water samples from Langat river basin by this new method demonstrated that the contaminant composition of the four samples can be classified into two distinct groups. The entire toxicity assay consisted of 2338 tests was completed within 12 h with a fluorescence microplate reader. Concurrently, the sample volume for each assay was reduced to 50 μL, which is 600 to 4700 times lesser to compare with conventional bioassays. These imply that the throughput of the CO biosensor-assisted TIE Phase I is now feasible for constructing a large-scale toxicity monitoring system, which would cover a whole watershed scale.
    Matched MeSH terms: Environmental Monitoring/methods
  6. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF
    Mar Pollut Bull, 2012 Nov;64(11):2409-20.
    PMID: 22925610 DOI: 10.1016/j.marpolbul.2012.08.005
    This article describes design and application of feed-forward, fully-connected, three-layer perceptron neural network model for computing the water quality index (WQI)(1) for Kinta River (Malaysia). The modeling efforts showed that the optimal network architecture was 23-34-1 and that the best WQI predictions were associated with the quick propagation (QP) training algorithm; a learning rate of 0.06; and a QP coefficient of 1.75. The WQI predictions of this model had significant, positive, very high correlation (r=0.977, p<0.01) with the measured WQI values, implying that the model predictions explain around 95.4% of the variation in the measured WQI values. The approach presented in this article offers useful and powerful alternative to WQI computation and prediction, especially in the case of WQI calculation methods which involve lengthy computations and use of various sub-index formulae for each value, or range of values, of the constituent water quality variables.
    Matched MeSH terms: Environmental Monitoring/methods*
  7. Nakata H, Shinohara R, Nakazawa Y, Isobe T, Sudaryanto A, Subramanian A, et al.
    Mar Pollut Bull, 2012 Oct;64(10):2211-8.
    PMID: 22910332 DOI: 10.1016/j.marpolbul.2012.07.049
    We analyzed 68 green and blue mussels collected from Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Vietnam and the USA during 2003 and 2007, to elucidate the occurrence and widespread distributions of emerging pollutants, synthetic musks and benzotriazole UV stabilizers (BUVSs) in Asia-Pacific coastal waters. Synthetic musks and BUVSs were detected in mussels from all countries, suggesting their ubiquitous contamination and widespread distribution. High concentrations of musks and BUVSs were detected in mussels from Japan and Korea, where the levels were comparable or greater than those of PCBs, DDTs and PBDEs. Significant correlations were found between the concentrations of HHCB and AHTN, and also between the concentrations of UV-327 and UV-328, which suggest similar sources and compositions of these compounds in commercial and industrial products. To our knowledge, this is the first study of large-scale monitoring of synthetic musks and BUVSs in Asia-Pacific coastal waters.
    Matched MeSH terms: Environmental Monitoring/methods*
  8. Monirith I, Ueno D, Takahashi S, Nakata H, Sudaryanto A, Subramanian A, et al.
    Mar Pollut Bull, 2003 Mar;46(3):281-300.
    PMID: 12604061
    Contamination of persistent organochlorines (OCs) such as PCBs (polychlorinated biphenyls), DDT and its metabolites (DDTs), HCH (hexachlorocyclohexane) isomers (HCHs), chlordane compounds (CHLs), and HCB (hexachlorobenzene) were examined in mussels collected from coastal waters of Asian countries such as Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Far East Russia, Singapore, and Vietnam in 1994, 1997, 1998, 1999, and 2001 to elucidate the contamination status, distribution and possible pollution sources and to assess the risks on aquatic organisms and human. OCs were detected in all mussels collected from all the sampling sites investigated. Considerable residue levels of p,p(')-DDT and alpha-HCH were found in mussels and the concentrations of DDTs and HCHs found in mussels from Asian developing countries were higher than those in developed nations suggesting present usage of DDTs and HCHs along the coastal waters of Asian developing countries. On the other hand, lower concentrations of PCBs detected in mussels from Asian developing countries than those in developed countries indicate that PCBs contamination in mussels is strongly related to industrial and activities. To our knowledge, this is a first comprehensive report on monitoring OCs pollution in the Asia-Pacific region.
    Matched MeSH terms: Environmental Monitoring/methods*
  9. Huang L, Zhu Y, Liu H, Wang Y, Allen DT, Chel Gee Ooi M, et al.
    Environ Int, 2023 Jan;171:107710.
    PMID: 36566719 DOI: 10.1016/j.envint.2022.107710
    In recent years, ozone pollution in China has been shown to increase in frequency and persistence despite the concentrations of fine particulate matter (PM2.5) decreasing steadily. Open crop straw burning (OCSB) activities are extensive in China and emit large amounts of trace gases during a short period that could lead to elevated ozone concentrations. This study addresses the impacts of OCSB emissions on ground-level ozone concentration and the associated health impact in China. Total VOCs and NOx emissions from OCSB in 2018 were 798.8 Gg and 80.6 Gg, respectively, with high emissions in Northeast China (31.7%) and North China (23.7%). Based on simulations conducted for 2018, OCSB emissions are estimated to contribute up to 0.95 µg/m3 increase in annual averaged maximum daily 8-hour (MDA8) ozone and up to 1.35 µg/m3 for the ozone season average. The significant impact of OCSB emissions on ozone is mainly characterized by localized and episodic (e.g., daily) changes in ozone concentration, up to 20 µg/m3 in North China and Yangtze River Delta region and even more in Northeast China during the burning season. With the implementation of straw burning bans, VOCs and NOx emissions from OCSB dropped substantially by 46.9%, particularly over YRD (76%) and North China (60%). Consequently, reduced OCSB emissions result in an overall decrease in annual averaged MDA8 ozone, and reductions in monthly MDA8 ozone could be over 10 µg/m3 in North China. The number of avoided premature death due to reduced OCSB emissions (considering both PM2.5 and ozone) is estimated to be 6120 (95% Confidence Interval: 5320-6800), with most health benefits gained over east and central China. Our results illustrate the effectiveness of straw burning bans in reducing ozone concentrations at annual and national scales and the substantial ozone impacts from OCSB events at localized and episodic scales.
    Matched MeSH terms: Environmental Monitoring/methods
  10. Nasher E, Heng LY, Zakaria Z, Surif S
    ScientificWorldJournal, 2013;2013:858309.
    PMID: 24163633 DOI: 10.1155/2013/858309
    Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH) in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID) was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g⁻¹ with a mean concentration of 1167.00 ± 24 ng g⁻¹, lower than the SQG effects range-low (3442 ng g⁻¹). The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites.
    Matched MeSH terms: Environmental Monitoring/methods*
  11. Fulazzaky MA
    Environ Monit Assess, 2013 Jan;185(1):523-35.
    PMID: 22373956 DOI: 10.1007/s10661-012-2572-6
    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.
    Matched MeSH terms: Environmental Monitoring/methods*
  12. Tham LG, Perumal N, Syed MA, Shamaan NA, Shukor MY
    J Environ Biol, 2009 Jan;30(1):135-8.
    PMID: 20112875
    An inhibitive assay of insecticides using Acetylcholinesterase (AChE) from the local fish Clarias batrachus is reported. AChE was assayed according to the modified method of Ellman. Screening of insecticide and heavy metals showed that carbofuran and carbaryl strongly inhibited C. batrachus AChE. The inhibition concentration (IC) IC50 values (and the 95% confidence interval) for both carbofuran and carbaryl inhibition on C. batrachus AChE at 6.66 (5.97-7.52) and 130.00 (119.3-142.5) microg l(-1), respectively was within the IC50 range of Electrophorus electricus at 6.20 (6.03-6.39) and 133.01 (122.40-145.50) microg l(-1), respectively and were much lower than bovine AChE at 20.94 (19.53-22.58) and 418.80 (390.60-451.60) microg l(-1), respectively. The results showed that C. batrachus have the potential to be used as a cheaper and more readily available source of AChE than other more commercially available sources.
    Matched MeSH terms: Environmental Monitoring/methods*
  13. Uddin MR, Khandaker MU, Ahmed S, Abedin MJ, Hossain SMM, Al Mansur MA, et al.
    PLoS One, 2024;19(4):e0300878.
    PMID: 38635835 DOI: 10.1371/journal.pone.0300878
    Saltwater intrusion in the coastal areas of Bangladesh is a prevalent phenomenon. However, it is not conducive to activities such as irrigation, navigation, fish spawning and shelter, and industrial usage. The present study analyzed 45 water samples collected from 15 locations in coastal areas during three seasons: monsoon, pre-monsoon, and post-monsoon. The aim was to comprehend the seasonal variation in physicochemical parameters, including water temperature, pH, electrical conductivity (EC), salinity, total dissolved solids (TDS), hardness, and concentrations of Na+, K+, Mg2+, Ca2+, Fe2+, HCO3-, PO43-, SO42-, and Cl-. Additionally, parameters essential for agriculture, such as soluble sodium percentage (SSP), sodium absorption ratio (SAR), magnesium absorption ratio (MAR), residual sodium carbonate (RSC), Kelly's ratio (KR), and permeability index (PI), were examined. Their respective values were found to be 63%, 16.83 mg/L, 34.92 mg/L, 145.44 mg/L, 1.28 mg/L, and 89.29%. The integrated water quality index was determined using entropy theory and principal component analysis (PCA). The resulting entropy water quality index (EWQI) and SAR of 49.56% and 63%, respectively, indicated that the samples are suitable for drinking but unsuitable for irrigation. These findings can assist policymakers in implementing the Bangladesh Deltaplan-2100, focusing on sustainable land management, fish cultivation, agricultural production, environmental preservation, water resource management, and environmental protection in the deltaic areas of Bangladesh. This research contributes to a deeper understanding of seasonal variations in the hydrochemistry and water quality of coastal rivers, aiding in the comprehension of salinity intrusion origins, mechanisms, and causes.
    Matched MeSH terms: Environmental Monitoring/methods
  14. Rizeei HM, Azeez OS, Pradhan B, Khamees HH
    Environ Monit Assess, 2018 Oct 04;190(11):633.
    PMID: 30288624 DOI: 10.1007/s10661-018-7013-8
    Groundwater hazard assessments involve many activities dealing with the impacts of pollution on groundwater, such as human health studies and environment modelling. Nitrate contamination is considered a hazard to human health, environment and ecosystem. In groundwater management, the hazard should be assessed before any action can be taken, particularly for groundwater pollution and water quality. Thus, pollution due to the presence of nitrate poses considerable hazard to drinking water, and excessive nutrient loads deteriorate the ecosystem. The parametric IPNOA model is one of the well-known methods used for evaluating nitrate content. However, it cannot predict the effect of soil and land use/land cover (LULC) types on calculations relying on parametric well samples. Therefore, in this study, the parametric model was trained and integrated with the multivariate data-driven model with different levels of information to assess groundwater nitrate contamination in Saladin, Iraq. The IPNOA model was developed with 185 different well samples and contributing parameters. Then, the IPNOA model was integrated with the logistic regression (LR) model to predict the nitrate contamination levels. Geographic information system techniques were also used to assess the spatial prediction of nitrate contamination. High-resolution SPOT-5 satellite images with 5 m spatial resolution were processed by object-based image analysis and support vector machine algorithm to extract LULC. Mapping of potential areas of nitrate contamination was examined using receiver operating characteristic assessment. Results indicated that the optimised LR-IPNOA model was more accurate in determining and analysing the nitrate hazard concentration than the standalone IPNOA model. This method can be easily replicated in other areas that have similar climatic condition. Therefore, stakeholders in planning and environmental decision makers could benefit immensely from the proposed method of this research, which can be potentially used for a sustainable management of urban, industrialised and agricultural sectors.
    Matched MeSH terms: Environmental Monitoring/methods
  15. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ, Tanko AI, et al.
    Environ Sci Pollut Res Int, 2015 Jan;22(2):1512-33.
    PMID: 25163562 DOI: 10.1007/s11356-014-3444-0
    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (<90), low (90-110), moderate (110-130), and high (>130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and manager with understanding needed to ensure sustainability of the island's aquifer.
    Matched MeSH terms: Environmental Monitoring/methods*
  16. Khodami S, Surif M, W O WM, Daryanabard R
    Mar Pollut Bull, 2017 Jan 15;114(1):615-622.
    PMID: 27887731 DOI: 10.1016/j.marpolbul.2016.09.038
    This study aimed to evaluate the spatial and temporal distribution of heavy metals (Cd, Cr, Cu, Co, Fe, Pb, Ni, V, and Zn) in the sediments of Bayan Lepas Free Industrial Zone of Penang, Malaysia. Ten sampling stations were selected and sediment samples were collected during low tide (2012-2013). Metals were analyzed and the spatial distribution of metals were evaluated based on GIS mapping. According to interim sediment quality guidelines (ISQG), metal contents ranged from below low level to above high level at different stations. Based on the geoaccumulation index (Igeo) of sediment, sampling stations were categorized from unpolluted to strongly polluted. The enrichment factor (EF) of metals in the sediment varied between no enrichment to extremely high enrichment. The potential ecological risk index (RI) indicated Bayan Lepas FIZ was at low risk.
    Matched MeSH terms: Environmental Monitoring/methods*
  17. Mohammad Ali BN, Lin CY, Cleophas F, Abdullah MH, Musta B
    Environ Monit Assess, 2015 Jan;187(1):4190.
    PMID: 25471626 DOI: 10.1007/s10661-014-4190-y
    This paper describes the concentration of selected heavy metals (Co, Cu, Ni, Pb, and Zn) in the Mamut river sediments and evaluate the degree of contamination of the river polluted by a disused copper mine. Based on the analytical results, copper showed the highest concentration in most of the river samples. A comparison with Interim Canadian Sediment Quality Guidelines (ICSQG) and Germany Sediment Quality Guidelines (GSQG) indicated that the sediment samples in all the sampling stations, except Mamut river control site (M1), exceeded the limit established for Cu, Ni, and Pb. On the contrary, Zn concentrations were reported well below the guidelines limit (ICSQG and GSQG). Mineralogical analysis indicated that the Mamut river sediments were primarily composed of quartz and accessory minerals such as chalcopyrite, pyrite, edenite, kaolinite, mica, and muscovite, reflected by the geological character of the study area. Enrichment factor (EF) and geoaccumulation index (Igeo) were calculated to evaluate the heavy metal pollution in river sediments. Igeo values indicated that all the sites were strongly polluted with the studied metals in most sampling stations, specifically those located along the Mamut main stream. The enrichment factor with value greater than 1.5 suggested that the source of heavy metals was mainly derived from anthropogenic activity such as mining. The degree of metal changes (δfold) revealed that Cu concentration in the river sediments has increased as much as 20 to 38 folds since the preliminary investigation conducted in year 2004.
    Matched MeSH terms: Environmental Monitoring/methods*
  18. Abdullah MZ, Saat AB, Hamzah ZB
    Environ Monit Assess, 2012 Jun;184(6):3959-69.
    PMID: 21822578 DOI: 10.1007/s10661-011-2236-y
    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area.
    Matched MeSH terms: Environmental Monitoring/methods*
  19. Chang KF, Fang GC, Chen JC, Wu YS
    Environ Pollut, 2006 Aug;142(3):388-96.
    PMID: 16343719
    Polycyclic aromatic hydrocarbons (PAHs) are present in both gaseous and particulate phases. These compounds are considered to be atmospheric contaminants and are human carcinogens. Many studies have monitored atmospheric particulate and gaseous phases of PAH in Asia over the past 5 years. This work compares and discusses different sample collection, pretreatment and analytical methods. The main PAH sources are traffic exhausts (AcPy, FL, Flu, PA, Pyr, CHR, BeP) and industrial emissions (BaP, BaA, PER, BeP, COR, CYC). PAH concentrations are highest in areas of traffic, followed by the urban sites, and lowest in rural sites. Meteorological conditions, such as temperature, wind speed and humidity, strongly affect PAH concentrations at all sampling sites. This work elucidates the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia.
    Matched MeSH terms: Environmental Monitoring/methods*
  20. Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, et al.
    Chemosphere, 2019 Dec;237:124451.
    PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451
    This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
    Matched MeSH terms: Environmental Monitoring/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links