Displaying publications 41 - 60 of 82 in total

Abstract:
Sort:
  1. Abdul Rahman HI, Shah SA, Alias H, Ibrahim HM
    Asian Pac J Cancer Prev, 2008 Oct-Dec;9(4):649-52.
    PMID: 19256754
    BACKGROUND: In Malaysia, acute leukemia is the most common cancer among children below the age of 15. A case-control study was here conducted for cases from the Klang Valley, Malaysia, who received treatment at the National University of Malaysia Hospital (HUKM) and Kuala Lumpur General Hospital (GHKL). The main objective was to determine any association with environmental factors.

    METHODS: Case subjects were children aged below 15 years and diagnosed with acute leukemia in HUKM and GHKL between January 1, 2001 and May 30, 2007. Control subjects were children aged below 15 years who were diagnosed with any non-cancerous acute illnesses in these hospitals. A total of 128 case subjects and 128 control subjects were enrolled in this study. The information was collected using a structured questionnaire and a global positioning system (GPS) device. All factors were analyzed using unmatched logistic regression.

    RESULTS: The analysis showed that the occurrence of acute leukemia among children was strongly determined by the following factors: family income (odds ratio (OR) 0.19, 95% confidence interval (CI): 0.09-0.42), father with higher social contact (OR 7.61, 95% CI: 3.78-15.4), number of elder siblings (OR 0.36, 95% CI: 0.18-0.77), father who smokes (OR 2.78, 95% CI: 1.49-5.16), and the distance of the house from a power line (OR 2.30, 95% CI: 1.18-4.49).

    CONCLUSIONS: Some socioeconomic, demographic, and environmental factors are strong predictors of the occurrence of acute leukemia among children in Klang Valley, Malaysia. In terms of environmental factors, it is recommended that future housing areas should be developed at least 200 m away from power lines.
    Matched MeSH terms: Leukemia, Myeloid, Acute/epidemiology*; Leukemia, Myeloid, Acute/therapy
  2. Maha A, Cheong SK, Leong CF, Seow HF
    Hematology, 2008 Feb;13(1):13-20.
    PMID: 18534060 DOI: 10.1179/102453308X315762
    Despite the advances in understanding the pathophysiology of acute myeloid leukaemia (AML), the cure rate for acute myeloid leukaemia patients remains low. Cytogenetic abnormalities and age are the prognostic factors that guide treatment decisions. However, many AML patients still die. The biological factors that influence treatment outcome are largely unknown. Thus, the objective of our study was to use the in vitro viability test to correlate with treatment outcome. Acute myeloid leukaemia blasts demonstrated differing ability to survive in culture. Our examination of blast phenotype at various days in culture showed two possible growth directions. First, cells underwent maturation by increased expression of CD16 and down-regulated CD34 (a haemopoietic stem cell marker). These cells also appeared to have undergone apoptosis. Alternatively, cells continued to survive in culture and maintained high expression of CD34. An MTT assay was carried out to determine viability after three days of culture. Lower optical density values were obtained for samples that underwent apoptosis and higher values were obtained for samples that survived in culture. Apoptosis was measured by Annexin V/propidium iodide staining. A comparison between results of MTT assay and duration of disease free survival revealed that a higher viability in vitro correlated significantly with shorter survival duration in the patient (R -0.761, p=0.002, n=13). Thus, this study further supports the hypothesis that AML patients with poor survival may be related to having blasts with a biologically more immature or stem cell-like nature.
    Matched MeSH terms: Leukemia, Myeloid, Acute/drug therapy; Leukemia, Myeloid, Acute/pathology*
  3. Lim MN, Leong CF, Cheong SK, Seow HF
    Malays J Pathol, 2003 Dec;25(2):107-12.
    PMID: 16196366
    Dendritic cells (DC) are efficient and potent antigen-presenting cells. Pilot clinical trials indicated that DC loaded with tumour antigen could induce tumour-specific immune responses in various cancers including B-cell lymphoma, melanoma and prostate cancer. Owing to extensively low number of DC in the blood circulation, a variety of sources have been used to generate DC including monocytes, CD34+ stem cells and even with leukaemic blast cells. We demonstrate here a simple method to generate DC from acute myeloid leukaemia (AML) cells and monocytes from healthy donor or remission samples. AML cells or monocytes were cultured in RPMI 1640 media supplemented with foetal bovine serum or autologous serum where possible and different combinations of cytokines GM-CSF, IL-4 and TNF-alpha. The generated DC were evaluated for their morphology by phase contrast microscopy and May Grunwald Giemsa staining. Viability of cells was determined by trypan blue dye exclusion. Percentage of yields and immunophenotypes were carried out by flow cytometry. We found that cultured AML cells and monocytes developed morphological and immuno-phenotypic characteristics of DC. Monocytes are better than AML blast in generating DC and serve as a ready source for dendritic cell vaccine development.
    Matched MeSH terms: Leukemia, Myeloid, Acute/immunology*; Leukemia, Myeloid, Acute/pathology
  4. Menon BS, Wan Maziah WM
    Malays J Pathol, 2001 Jun;23(1):47-8.
    PMID: 16329548
    The aim of this study was to determine the incidence and outcome of herpes zoster hospitalised children with cancer in Kota Baru. It was a retrospective review from January 1994 to December 1998. The diagnosis of herpes zoster was a clinical one. Herpes zoster was diagnosed in 10 of 188 (5%) children with malignancy. The most common malignancy was leukaemia. Nine children were treated with acyclovir. No child developed visceral dissemination and there were no deaths.
    Matched MeSH terms: Leukemia, Myeloid, Acute/immunology; Leukemia, Myeloid, Acute/epidemiology; Leukemia, Myeloid, Acute/virology*
  5. Fatemeh Barantalab, Pei-Pei Chong, Cindee Lee, Stephnie Kang Xian Yiau, Kian Meng Chang, Zainina Seman, et al.
    MyJurnal
    Introduction: Drug-resistance is a major hindrance to successful treatment of AML. Current predictive biomarkers are mainly genetic aberrations and insufficient in foretelling treatment outcome in all acute myeloid leukaemia (AML) due to its heterogeneous and aggressive nature. Proteins are stable and reliable. Secreted proteins in AML may have predictive or prognostic values for early intervention. Proteomic studies on AML are few and further investigations will benefit in selection of best markers. The aim of the study was to identify differentially expressed plasma proteins in AML with different treatment outcome. Methods: Two-dimensional electrophoresis (2-DE) technique was utilised to identify proteins differentially expressed in chemo-sensitive/chemo-resistant AML. Plasma and peripheral blood mononuclear cell (PBMC) lysate proteome analysis were performed on six chemo-resistant, four chemo-sensitive and six healthy controls and seven chemo-resistant, three chemo-sensitive and six healthy controls, respectively. Each experiment was conducted in duplicate or triplicate. Images were captured and protein spots detected by software. Differentially expressed protein spots were excised from gel and proteins were identified using LC/MS/MS. Proteins spots that were also detected in healthy controls were excluded. Results: Comparing mean % volume of each spot demonstrated significantly enhanced expression of apoliprotein-E (APO-E) and haptoglobin (HP) (p
    Matched MeSH terms: Leukemia, Myeloid, Acute
  6. Mohamed Yusoff AA, Zulfakhar FN, Sul’ain MD, Idris Z, Abdullah JM
    Asian Pac J Cancer Prev, 2016 12 01;17(12):5195-5201.
    PMID: 28125199
    Background: Brain tumors, constituting one of the most deadly forms of cancer worldwide, result from the accumulation of multiple genetic and epigenetic alterations in genes and signaling pathways. Isocitrate dehydrogenase enzyme isoform 1 (IDH1) mutations are frequently identified in primary brain tumors and acute myeloid leukemia. Studies on IDH1 gene mutations have been extensively performed in various populations worldwide but not in Malaysia. This work was conducted to study the prevalence of IDH1 c.395G>A (R132H) hotspot mutations in a group of Malaysian patients with brain tumors in order to gain local data for the IDH1 mutation profile in our population. Methods: Mutation analysis of c.395G>A (R132H) of IDH1 was performed in 40 brain tumor specimens by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) and then verified by direct sequencing. Associations between the IDH1 c.395G>A (R132H) mutation and clinicopathologic characteristics were also analyzed. Results: The IDH1 c.395G>A (R132H) mutation was detected in 14/40 patients (35%). A significant association was found with histological tumor types, but not with age, gender and race. Conclusions: IDH1 is frequently mutated and associated with histological subtypes in Malay brain tumors.
    Matched MeSH terms: Leukemia, Myeloid, Acute
  7. Phan, CL, Ong, TC, Chang, KM, Zubaidah, Z., Puteri Jamilatul, N.M.B.
    Medicine & Health, 2010;5(1):45-48.
    MyJurnal
    The t(8;21)(q22;q22) is a frequently occurring aberration in acute myeloid leukemia (AML) (18-20%) and usually correlate with French-America-British (FAB) M2 subtype. Several studies showed that patients carrying this abnormality demonstrated good response to standard chemotherapy but also have a high incidence of disease relapse. Trisomy 4 is a rare and specific chromosomal abnormality occurring in AML M2 or M4 of the FAB subtypes. We report a case of a 33-year-old female with an apparently clinical and hematologic diagnosis of acute promyelocytic leukemia (APL) in whom cytogenetic analysis revealed an abnormal karyotype with trisomy 4, in addition to t(8;21). Trisomy 4 and t(8;21) in a patient with AML is rare. The significance of t(8;21) with trisomy 4 in AML are unclear but patients bearing this abnormality are associated with a poor prognosis.
    Matched MeSH terms: Leukemia, Myeloid, Acute
  8. Hamid Ali Nagi Al-Jamal, Wan Rohani Wan Taib, Siti Asmaa Mat Jusoh, Aziee Sudin, Muhammad Farid Johan
    MyJurnal
    Azacytidine (5-Aza) is a chemotherapeutic drug that has been known to restore the expression of Tumour suppressor genes by de-methylation and shown clinical efficacy inMyelodysplastic syndrome (MDS) [1-3]. Currently, 5-Aza is being used in UK for the treatment of some adults with MDS, chronic myelocytic leukemia (CML) and acute myelocytic leukemia (AML) [4]. Majority of CML patients treated with imatinib, a BCR/ABL inhibitor would develop resistance under prolonged therapy. Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor that is constitutively activated in various human cancers including hematological malignancies. Activation of STAT3 represents an important mechanism of imatinib resistant [5]. Methylation of SHP-1is involved in the constitutive activation of STAT3 [6], and a low level of SHP-1is not sufficient to inhibit activated STAT3 [7]. Epigenetic silencing of SHP-1also plays a role in the development of resistance to imatinib in BCR/ABL positive CML cells.
    Matched MeSH terms: Leukemia, Myeloid, Acute
  9. M.R. Mohd Hafiz, M.Z. Mazatulikhma, F.A. Mohd Faiz, M.S. Mohamed Saifulaman
    Sains Malaysiana, 2013;42:1131-1137.
    In this study, RNA interference (RNAi) was carried out as an experimental technique to knockdown three mitogen-activated protein kinase (MAPK) pathway genes, raf-1, mekk1 and mlk3 in acute myeloid leukemia (AML) cells. Conventionally, RNAi knockdown experiments target a single gene for functional studies or therapeutic purposes. We wanted to explore the potential differences or similarities between targeting single targets or multiple target genes in a single application. We achieved knockdown of gene expression levels of between 40 and 60% for the RNAi experiments, with better knockdown observed in single target gene experiments in comparison with the multiple target gene experiment. Microarray analysis indicated that the transfection process had most likely induced the immune response from the cells in every RNAi treatment. This might indicate that when the MAPK signaling pathway is partially blocked, in tandem with the immune response, the cells will begin signaling for apoptosis leading to cellular death of the leukemic cells.
    Matched MeSH terms: Leukemia, Myeloid, Acute
  10. Islam M, Mohamed Z, Assenov Y
    Int J Genomics, 2017;2017:2913648.
    PMID: 28713819 DOI: 10.1155/2017/2913648
    Acute myeloid leukemia (AML) is a haematological malignancy characterized by the excessive proliferation of immature myeloid cells coupled with impaired differentiation. Many AML cases have been reported without any known cytogenetic abnormalities and carry no mutation in known AML-associated driver genes. In this study, 200 AML cases were selected from a publicly available cohort and differentially analyzed for genetic, epigenetic, and cytogenetic abnormalities. Three genes (FLT3, DNMT3A, and NPMc) are found to be predominantly mutated. We identified several aberrations to be associated with genome-wide methylation changes. These include Del (5q), T (15; 17), and NPMc mutations. Four aberrations-Del (5q), T (15; 17), T (9; 22), and T (9; 11)-are significantly associated with patient survival. Del (5q)-positive patients have an average survival of less than 1 year, whereas T (15; 17)-positive patients have a significantly better prognosis. Combining the methylation and mutation data reveals three distinct patient groups and four clusters of genes. We speculate that combined signatures have the better potential to be used for subclassification of AML, complementing cytogenetic signatures. A larger sample cohort and further investigation of the effects observed in this study are required to enable the clinical application of our patient classification aided by DNA methylation.
    Matched MeSH terms: Leukemia, Myeloid, Acute
  11. Krishnan GD, Zakaria MH, Yahaya N
    J ASEAN Fed Endocr Soc, 2020;35(2):163-168.
    PMID: 33442187 DOI: 10.15605/jafes.035.02.03
    Introduction: Vitamin B12 deficiency is more common among metformin-treated subjects although the prevalence is variable. Many factors have been associated with this. The aim of this study is to determine the prevalence of vitamin B12 deficiency and its associated factors among patients with type 2 diabetes mellitus (DM) who are on metformin.

    Methodology: A total of 205 patients who fit eligibility criteria were included in the study. A questionnaire was completed, and blood was drawn to study vitamin B12 levels. Vitamin B12 deficiency was defined as serum B12 level of ≤300 pg/mL (221 pmol/L).

    Results: The prevalence of vitamin B12 deficiency among metformin-treated patients with type 2 DM patients was 28.3% (n=58). The median vitamin B12 level was 419 (±257) pg/mL. The non-Malay population was at a higher risk for metformin-associated vitamin B12 deficiency [adjusted odds ratio (OR) 3.86, 95% CI: 1.836 to 8.104, p<0.001]. Duration of metformin use of more than five years showed increased risk for metformin-associated vitamin B12 deficiency (adjusted OR 2.06, 95% CI: 1.003 to 4.227, p=0.049).

    Conclusion: Our study suggests that the prevalence of vitamin B12 deficiency among patients with type 2 diabetes mellitus on metformin in our population is substantial. This is more frequent among the non-Malay population and those who have been on metformin for more than five years.

    Matched MeSH terms: Leukemia, Myeloid, Acute
  12. Fazlina N, Maha A, Zarina AL, Hamidah A, Zulkifli SZ, Cheong SK, et al.
    Malays J Pathol, 2008 Dec;30(2):87-93.
    PMID: 19291917
    Multidrug resistance (MDR) is believed to be responsible for poor response of patients towards chemotherapy particularly patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). The best-characterized resistance mechanism is the one mediated by permeability-glycoprotein (P-gp) encoded by MDR1 gene, which is responsible for drug efflux. We studied P-gp and multidrug resistance-associated protein 1 (MRP1) expression and functional activities in 43 newly diagnosed acute leukemia cases (19 paediatric ALL cases and 24 adult AML cases). The expression and functional activities were examined using flow cytometry and MultiDrugQuant assay kit (involving calcein AM uptake and efflux). P-gp and MRP1 expression and its functional activities were observed in 68.4% of paediatric ALL. In adult AML cases, all cases expressed MRP1 and its functional activities but only 58.3% were positive for P-gp and its functional activities. We were able to show a significant correlation between the expression of the multidrug resistant protein (P-gp and MRP1) and their functional activity in adult AML and paediatric ALL samples.
    Matched MeSH terms: Leukemia, Myeloid, Acute/metabolism*
  13. Fadilah SA, Cheong SK, Maimunah A, Toh ST, Shamin AS
    Postgrad Med J, 2001 Nov;77(913):733-4, 737-9.
    PMID: 11677287
    Matched MeSH terms: Leukemia, Myeloid, Acute/complications*
  14. Leong CF, Cheong SK, Fadilah SAW, Ainoon O, Hamidah NH
    Med J Malaysia, 2003 Jun;58(2):229-35.
    PMID: 14569743
    Allogeneic haemopoietic stem cell transplantation was initially considered as a means of delivering supralethal doses of chemotherapy with or without total body irradiation for the treatment of malignancy. However, it has become clear that this mode of therapy does not eradicate the malignancy in many patients and its benefit is largely due to the immune mediated graft versus malignancy effect. This has led to development of alternative strategy to utilize a less intensive preparative regimen pre-transplantation that provides sufficient immunosuppression to achieve engraftment of an allogeneic stem cell graft, thus allowing the evolution of a graft versus malignancy effect post-transplantation. Since September 1999, we had carried out 10 cases of allogeneic peripheral blood stem cell transplantation: one case of aplastic anaemia, four cases of acute myeloid leukemia (AML) in first remission, and five cases of chronic myeloid leukemia (CML) in chronic phase. The preparative regimen was non-myeloablative comprising Fludarabine with Cyclophosphamide or Busulphan. Recovery from transplantation was rapid with no or brief period of neutropenia or thrombocytopenia. Engraftment was established by determining donor's short tandem repeats in the recipient's bone marrow at day 30, 60 and 100 post-transplantation. Seven cases (70%) show partial or complete donor's chimerism by day 30 indicating successful engraftment. No treatment mortality was noted at day 100. Graft versus host disease was generally limited. Up to the date of reporting, two patients with CML had graft failure, one was successfully re-transplanted later. Two patients with AML had since relapsed and passed away. The others remain alive and well. The cost of transplantation on average was estimated to be about a quarter of that using a myeloablative regimen. It appears that this treatment strategy is a promising approach for the management of blood disorders.
    Matched MeSH terms: Leukemia, Myeloid, Acute/therapy*
  15. Lee C, Yiau KXS, Lee LJ, Chong PP, Chang KM, Abdullah M
    Malays J Pathol, 2019 Dec;41(3):313-326.
    PMID: 31901916
    INTRODUCTION: Quantitative polymerase chain reaction (qPCR) is commonly used in the investigation of acute myeloid leukaemias (AML). Stable reference genes (RG) are essential for accurate and reliable reporting but no standard method for selection has been endorsed.

    MATERIALS AND METHODS: We evaluated simple statistics and published model-based approaches. Multiplex-qPCR was conducted to determine the expression of 24 candidate RG in AMLs (N=9). Singleplex-qPCR was carried out on selected RG (SRP14, B2M and ATP5B) and genes of interest in AML (N=15) and healthy controls, HC (N=12).

    RESULTS: RG expression levels in AML samples were highly variable and coefficient of variance (CV) ranged from 0.37% to 10.17%. Analysis using GeNorm and Normfinder listed different orders of most stable genes but the top seven (ACTB, UBE2D2, B2M, NF45, RPL37A, GK, QARS) were the same. In singleplex-qPCR, SRP14 maintained the lowest CV in AML samples. B2M, one of most stable reference genes in AML, was expressed near significantly different in AML and HC. GeNorm selected ATP5B+SRP14 while Normfinder chose SRP14+B2M as the best two RG in combination. The median expressions of combined RG genes in AML compared to HC were less significantly different than individually implying smaller expression variation after combination. Genes of interest normalised with RG in combination or individually, displayed significantly different expression patterns.

    CONCLUSIONS: The selection of best reference gene in qPCR must consider all sample sets. Model-based approaches are important in large candidate gene analysis. This study showed combination of RG SRP14+B2M was the most suitable normalisation factor for qPCR analysis of AML and healthy individuals.

    Matched MeSH terms: Leukemia, Myeloid, Acute/genetics*
  16. Zainul Abidin FN, Westhead DR
    Nucleic Acids Res, 2017 04 20;45(7):e53.
    PMID: 27994031 DOI: 10.1093/nar/gkw1270
    Clustering is used widely in 'omics' studies and is often tackled with standard methods, e.g. hierarchical clustering. However, the increasing need for integration of multiple data sets leads to a requirement for clustering methods applicable to mixed data types, where the straightforward application of standard methods is not necessarily the best approach. A particularly common problem involves clustering entities characterized by a mixture of binary data (e.g. presence/absence of mutations, binding, motifs and epigenetic marks) and continuous data (e.g. gene expression, protein abundance, metabolite levels). Here, we present a generic method based on a probabilistic model for clustering this type of data, and illustrate its application to genetic regulation and the clustering of cancer samples. We show that the resulting clusters lead to useful hypotheses: in the case of genetic regulation these concern regulation of groups of genes by specific sets of transcription factors and in the case of cancer samples combinations of gene mutations are related to patterns of gene expression. The clusters have potential mechanistic significance and in the latter case are significantly linked to survival. The method is available as a stand-alone software package (GNU General Public Licence) from http://github.com/BioToolsLeeds/FlexiCoClusteringPackage.git.
    Matched MeSH terms: Leukemia, Myeloid, Acute/genetics
  17. Chin YM, Bosco JJ, Koh CL
    Singapore Med J, 1992 Feb;33(1):48-50.
    PMID: 1598607
    In vitro deoxyribonucleic acid (DNA) amplification by the polymerase chain reaction (PCR) followed by hybridization with oligonucleotide probes were used to study ras gene mutations in acute myeloid leukemia (AML). The DNA of 30 AML patients at presentation of the disease at the University of Malaya Hospital, Kuala Lumpur were screened for ras gene mutations in codons 12, 13 and 61 of the N-ras, K-ras and H-ras genes. Four patients (13.3%) had ras gene mutations. They were all below their early thirties in age. Of the four patients with ras gene mutations, three were M3 and one was M4 according to the French American British (FAB) classification of AML.
    Matched MeSH terms: Leukemia, Myeloid, Acute/genetics*
  18. Karunakaran R, Halim HA, Ng KP, Hanifah YA, Chin E, Jaafar FL, et al.
    Eur Rev Med Pharmacol Sci, 2011 Nov;15(11):1343-6.
    PMID: 22195371
    Tsukamurella spp. are a rare but important cause of intravascular catheter-related bacteremia in immunocompromised patients. The organism is an aerobic, Gram-positive, weakly acid-fast bacillus that is difficult to differentiate using standard laboratory methods from other aerobic actinomycetales such as Nocardia spp., Rhododoccus spp., Gordonia spp., and the rapid growing Mycobacterium spp. We report a case of Tsukamurella tyrosinosolvens catheter-related bacteremia in a 51-year-old haematology patient who responded to treatment with imipenem and subsequent line removal. 16srRNA sequencing allowed for the prompt identification of this organism.
    Matched MeSH terms: Leukemia, Myeloid, Acute/complications; Leukemia, Myeloid, Acute/drug therapy
  19. Alhuthali HM, Bradshaw TD, Lim KH, Kam TS, Seedhouse CH
    BMC Cancer, 2020 Jul 07;20(1):629.
    PMID: 32635894 DOI: 10.1186/s12885-020-07119-2
    BACKGROUND: Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells.

    METHODS: We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species.

    RESULTS: AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC).

    CONCLUSIONS: This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-induced c-Jun activation as the major mechanism of action.

    Matched MeSH terms: Leukemia, Myeloid, Acute/drug therapy*; Leukemia, Myeloid, Acute/pathology
  20. Jafarlou M, Baradaran B, Shanehbandi D, Saedi TA, Jafarlou V, Ismail P, et al.
    Cell Mol Biol (Noisy-le-grand), 2016 May 30;62(6):44-9.
    PMID: 27262801
    Acute myeloid leukemia (AML) is one of the most frequent types of leukemia which mostly affects adult people. Resistance to therapeutic drugs is considered as a major clinical concern resulting in a weaker response to chemotherapy, disease relapse and decreased survival rate. Survivin, a member of Inhibitor of Apoptosis Proteins (IAPs), is associated with drug resistance and inhibition of apoptotic mechanisms in numerous hematological malignancies. In the present study, we examined the combined effect of etoposide and siRNA-mediated silencing of survivin on U-937 acute myeloid leukemia cells. The AML cells were transfected with survivin specific siRNA and gene knockdown was confirmed by quantitative real time PCR and western blotting. Subsequently, U-937 cells were assessed for response to etoposide treatment and apoptosis rate was measured with flowcytometery. The cytotoxic effects in siRNA-etoposide group were measured and compared to etoposide single therapy group. Survivin siRNA effectively knocked down the mRNA and protein levels of survivin, which led to lower cell proliferation and enhanced apoptosis. Furthermore, combined treatment of etoposide and survivin siRNA synergistically increased the cell toxic effects of etoposide and its ability to induce apoptosis.
    Matched MeSH terms: Leukemia, Myeloid, Acute/drug therapy*; Leukemia, Myeloid, Acute/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links