Displaying publications 41 - 60 of 91 in total

Abstract:
Sort:
  1. Tan KS, Azman AS, Hassandarvish P, Amelia-Yap ZH, Tan TK, Low VL
    Int J Mol Sci, 2023 Aug 03;24(15).
    PMID: 37569772 DOI: 10.3390/ijms241512398
    The insecticidal activity of Streptomyces sp. KSF103 ethyl acetate (EA) extract against mosquitoes is known; however, the underlying mechanism behind this activity remains elusive. In this study, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was employed to investigate changes in the protein profile of Aedes aegypti larvae and adults treated with lethal concentrations of 50 (LC50) EA extract. By comparing the treated and untreated mosquitoes, this study aimed to identify proteins or pathways that exhibit alterations, potentially serving as targets for future insecticide development. Treatment with a lethal concentration of EA extract upregulated 15 proteins in larvae, while in adults, 16 proteins were upregulated, and two proteins were downregulated. These proteins were associated with metabolism, protein regulation/degradation, energy production, cellular organization and structure, enzyme activity, and catalysis, as well as calcium ion transport and homeostasis. Notably, ATP synthase, fructose-bisphosphate aldolase (FBA), and ATP citrate synthase were significantly expressed in both groups. Gene ontology analysis indicated a focus on energy metabolic processes. Molecular docking revealed a strong interaction between dodemorph, selagine (compounds from the EA extract), and FBA, suggesting FBA as a potential protein target for insecticide development. Further studies such as Western blot and transcriptomic analyses are warranted to validate the findings.
    Matched MeSH terms: Metabolic Networks and Pathways
  2. Zamani AI, Barig S, Ibrahim S, Mohd Yusof H, Ibrahim J, Low JYS, et al.
    Microb Cell Fact, 2020 Sep 09;19(1):179.
    PMID: 32907579 DOI: 10.1186/s12934-020-01434-w
    BACKGROUND: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources.

    RESULTS: Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures.

    CONCLUSIONS: Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.

    Matched MeSH terms: Metabolic Networks and Pathways
  3. Yusof HM, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M
    Malays J Med Sci, 2018 Sep;25(5):16-34.
    PMID: 30914860 MyJurnal DOI: 10.21315/mjms2018.25.5.3
    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Early diagnosis and accurate staging of the disease is vital to improve the prognosis. Metabolomics has been used to identify changes in metabolite profiles in the different stages of cancer in order to introduce new non-invasive molecular tools for staging. In this systematic review, we aim to identify the common metabolite changes in human biological samples and the dominant metabolic pathways associated with CRC progression. A broad systematic search was carried out from selected databases. Four reviewers screened and reviewed the titles, abstracts, and full-text articles according to the inclusion and exclusion criteria. Quality assessment was conducted on the eight articles which met the criteria. Data showed that the metabolites involved with redox status, energy metabolism and intermediates of amino acids, choline and nucleotides metabolism were the most affected during CRC progression. However, there were differences in the levels of individual metabolites detected between the studies, and this might be due to the study population, sample preparation, analytical platforms used and statistical tools. In conclusion, this systematic review highlights the changes in metabolites from early to late stages of CRC. Moreover, biomarkers for prognosis are important to reduce CRC-related mortality.
    Matched MeSH terms: Metabolic Networks and Pathways
  4. Md-Mustafa ND, Khalid N, Gao H, Peng Z, Alimin MF, Bujang N, et al.
    BMC Genomics, 2014;15:984.
    PMID: 25407215 DOI: 10.1186/1471-2164-15-984
    Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway.
    Matched MeSH terms: Metabolic Networks and Pathways/genetics
  5. Tang PW, Choon YW, Mohamad MS, Deris S, Napis S
    J Biosci Bioeng, 2015 Mar;119(3):363-8.
    PMID: 25216804 DOI: 10.1016/j.jbiosc.2014.08.004
    Metabolic engineering is a research field that focuses on the design of models for metabolism, and uses computational procedures to suggest genetic manipulation. It aims to improve the yield of particular chemical or biochemical products. Several traditional metabolic engineering methods are commonly used to increase the production of a desired target, but the products are always far below their theoretical maximums. Using numeral optimisation algorithms to identify gene knockouts may stall at a local minimum in a multivariable function. This paper proposes a hybrid of the artificial bee colony (ABC) algorithm and the minimisation of metabolic adjustment (MOMA) to predict an optimal set of solutions in order to optimise the production rate of succinate and lactate. The dataset used in this work was from the iJO1366 Escherichia coli metabolic network. The experimental results include the production rate, growth rate and a list of knockout genes. From the comparative analysis, ABCMOMA produced better results compared to previous works, showing potential for solving genetic engineering problems.
    Matched MeSH terms: Metabolic Networks and Pathways/genetics
  6. Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV
    Gene, 2015 Oct 15;571(1):71-80.
    PMID: 26115767 DOI: 10.1016/j.gene.2015.06.050
    MicroRNAs (miRNAs) are a class of small, endogenous non-coding RNAs that negatively regulate gene expression, resulting in the silencing of target mRNA transcripts through mRNA cleavage or translational inhibition. MiRNAs play significant roles in various biological and physiological processes in plants. However, the miRNA-mediated gene regulatory network in pineapple, the model tropical non-climacteric fruit, remains largely unexplored. Here, we report a complete list of pineapple mature miRNAs obtained from high-throughput small RNA sequencing and precursor miRNAs (pre-miRNAs) obtained from ESTs. Two small RNA libraries were constructed from pineapple fruits and leaves, respectively, using Illumina's Solexa technology. Sequence similarity analysis using miRBase revealed 579,179 reads homologous to 153 miRNAs from 41 miRNA families. In addition, a pineapple fruit transcriptome library consisting of approximately 30,000 EST contigs constructed using Solexa sequencing was used for the discovery of pre-miRNAs. In all, four pre-miRNAs were identified (MIR156, MIR399, MIR444 and MIR2673). Furthermore, the same pineapple transcriptome was used to dissect the function of the miRNAs in pineapple by predicting their putative targets in conjunction with their regulatory networks. In total, 23 metabolic pathways were found to be regulated by miRNAs in pineapple. The use of high-throughput sequencing in pineapples to unveil the presence of miRNAs and their regulatory pathways provides insight into the repertoire of miRNA regulation used exclusively in this non-climacteric model plant.
    Matched MeSH terms: Metabolic Networks and Pathways/genetics
  7. Motaghed M, Al-Hassan FM, Hamid SS
    Int J Mol Med, 2014 Jan;33(1):8-16.
    PMID: 24270600 DOI: 10.3892/ijmm.2013.1563
    New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low Input Quick Amplification Labelling kit was used to generate cRNA in two-color microarray analysis. Samples with RIN >9.0 were used in this study. The universal human reference RNA was used as the common reference. The samples were labelled with cyanine-3 (cye-3) CTP dye and the universal human reference was labelled with cyanine-5 (cye-5) CTP dye. cRNA was purified with the RNeasy Plus Mini kit and quantified using a NanoDrop 2000c spectrophotometer. The arrays were scanned data analysed using Feature Extraction and GeneSpring software. Two-step qRT-PCR was selected to determine the relative gene expression using the High Capacity RNA-to-cDNA kit. The results from Gene Ontology (GO) analysis, indicated that 8 GO terms were related to biological processes (84%) and molecular functions (16%). A total of 577 entities showed >2-fold change in expression. Of these entities, 45.2% showed an upregulation and 54.7% showed a downregulation in expression. The interpretation of single experiment analysis (SEA) revealed that the cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and UDP glucuronosyltransferase 1 family, polypeptide A8 (UGT1A8) genes in the estrogen metabolic pathway were downregulated significantly by 43- and 11‑fold, respectively. The solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11 (SLC7A11) gene in the interferon pathway, reported to be involved in the development of chemoresistance, was downregulated by 15‑fold. The interferon-induced protein with tetratricopeptide repeats (IFIT)1, IFIT2, IFIT3, interferon, α-inducible protein (IFI)6 (also known as G1P3), interferon regulatory factor 9 (IRF9, ISGF3), 2'-5'-oligoadenylate synthetase 1, 40/46 kDa (OAS1) and signal transducer and activator of transcription 1 (STAT1) genes all showed changes in expression following treatment with thymoquinone. The caspase 10, apoptosis-related cysteine peptidase (CASP10) gene was activated and the protein tyrosine phosphatase, receptor type, R (PTPRR) and myocyte enhancer factor 2C (MEF2C) genes were upregulated in the classical MAPK and p38 MAPK pathways. These findings indicate that thymquinone targets specific genes in the estrogen metabolic and interferon pathways.
    Matched MeSH terms: Metabolic Networks and Pathways*
  8. Wang W, Shao Z
    Appl Microbiol Biotechnol, 2012 Apr;94(2):437-48.
    PMID: 22207216 DOI: 10.1007/s00253-011-3818-x
    Alcanivorax hongdengensis A-11-3 is a newly identified type strain isolated from the surface water of the Malacca and Singapore Straits that can degrade a wide range of alkanes. To understand the degradation mechanism of this strain, the genes encoding alkane hydroxylases were obtained by PCR screening and shotgun sequencing of a genomic fosmid library. Six genes involved in alkane degradation were found, including alkB1, alkB2, p450-1, p450-2, p450-3 and almA. Heterogeneous expression analysis confirmed their functions as alkane oxidases in Pseudomonas putida GPo12 (pGEc47ΔB) or Pseudomonas fluorescens KOB2Δ1. Q-PCR revealed that the transcription of alkB1 and alkB2 was enhanced in the presence of n-alkanes C(12) to C(24); three p450 genes were up-regulated by C(8)-C(16) n-alkanes at different levels, whereas enhanced expression of almA was observed when strain A-11-3 grew with long-chain alkanes (C(24) to C(36)). In the case of branched alkanes, pristane significantly enhanced the expression of alkB1, p450-3 and almA. The six genes enable strain A-11-3 to degrade short (C(8)) to long (C(36)) alkanes that are straight or branched. The ability of A. hongdengensis A-11-3 to thrive in oil-polluted marine environments may be due to this strain's multiple systems for alkane degradation and its range of substrates.
    Matched MeSH terms: Metabolic Networks and Pathways/genetics*
  9. Hua ZS, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, et al.
    Nat Commun, 2019 10 08;10(1):4574.
    PMID: 31594929 DOI: 10.1038/s41467-019-12574-y
    Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor.
    Matched MeSH terms: Metabolic Networks and Pathways/genetics
  10. Tang KS
    Life Sci, 2019 Sep 15;233:116695.
    PMID: 31351082 DOI: 10.1016/j.lfs.2019.116695
    Alzheimer's disease (AD) is neurodegenerative disorder that is associated with memory and cognitive decline in the older adults. Scopolamine is commonly used as a behavioral model in studying cognitive disorders including AD. Many studies have also concurrently examined the neurochemical mechanisms underlying the behavioral modifications by scopolamine treatment. Nonetheless, the scopolamine model has not become a standard tool in the early assessment of drugs. Furthermore, the use of scopolamine as a pharmacological model to study AD remains debatable. This report reviews the scopolamine-induced cellular and molecular changes and discusses how these changes relate to AD pathogenesis.
    Matched MeSH terms: Metabolic Networks and Pathways/drug effects*
  11. Kinfe TM, Buchfelder M, Chaudhry SR, Chakravarthy KV, Deer TR, Russo M, et al.
    Int J Mol Sci, 2019 Sep 24;20(19).
    PMID: 31554241 DOI: 10.3390/ijms20194737
    Chronic pain is a devastating condition affecting the physical, psychological, and socioeconomic status of the patient. Inflammation and immunometabolism play roles in the pathophysiology of chronic pain disorders. Electrical neuromodulation approaches have shown a meaningful success in otherwise drug-resistant chronic pain conditions, including failed back surgery, neuropathic pain, and migraine. A literature review (PubMed, MEDLINE/OVID, SCOPUS, and manual searches of the bibliographies of known primary and review articles) was performed using the following search terms: chronic pain disorders, systemic inflammation, immunometabolism, prediction, biomarkers, metabolic disorders, and neuromodulation for chronic pain. Experimental studies indicate a relationship between the development and maintenance of chronic pain conditions and a deteriorated immunometabolic state mediated by circulating cytokines, chemokines, and cellular components. A few uncontrolled in-human studies found increased levels of pro-inflammatory cytokines known to drive metabolic disorders in chronic pain patients undergoing neurostimulation therapies. In this narrative review, we summarize the current knowledge and possible relationships of available neurostimulation therapies for chronic pain with mediators of central and peripheral neuroinflammation and immunometabolism on a molecular level. However, to address the needs for predictive factors and biomarkers, large-scale databank driven clinical trials are needed to determine the clinical value of molecular profiling.
    Matched MeSH terms: Metabolic Networks and Pathways*
  12. Gopinath D, Menon RK, Wie CC, Banerjee M, Panda S, Mandal D, et al.
    Sci Rep, 2021 01 13;11(1):1181.
    PMID: 33441939 DOI: 10.1038/s41598-020-80859-0
    Microbial dysbiosis has been implicated in the pathogenesis of oral cancer. We analyzed the compositional and metabolic profile of the bacteriome in three specific niches in oral cancer patients along with controls using 16SrRNA sequencing (Illumina Miseq) and DADA2 software. We found major differences between patients and control subjects. Bacterial communities associated with the tumor surface and deep paired tumor tissue differed significantly. Tumor surfaces carried elevated abundances of taxa belonging to genera Porphyromonas, Enterobacteriae, Neisseria, Streptococcus and Fusobacteria, whereas Prevotella, Treponema, Sphingomonas, Meiothermus and Mycoplasma genera were significantly more abundant in deep tissue. The most abundant microbial metabolic pathways were those related to fatty-acid biosynthesis, carbon metabolism and amino-acid metabolism on the tumor surface: carbohydrate metabolism and organic polymer degradation were elevated in tumor tissues. The bacteriome of saliva from patients with oral cancer differed significantly from paired tumor tissue in terms of community structure, however remained similar at taxonomic and metabolic levels except for elevated abundances of Streptococcus, Lactobacillus and Bacteroides, and acetoin-biosynthesis, respectively. These shifts to a pro-inflammatory profile are consistent with other studies suggesting oncogenic properties. Importantly, selection of the principal source of microbial DNA is key to ensure reliable, reproducible and comparable results in microbiome studies.
    Matched MeSH terms: Metabolic Networks and Pathways/genetics
  13. Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I
    Oncotarget, 2016 Jun 14;7(24):36719-36732.
    PMID: 27167341 DOI: 10.18632/oncotarget.9165
    Pancreatic stellate cells (PSC), a prominent stromal cell, contribute to the progression of pancreatic ductal adenocarcinoma (PDAC). We aim to investigate the mechanisms by which PSC promote cell proliferation in PDAC cell lines, BxPC-3 and AsPC-1. PSC-conditioned media (PSC-CM) induced proliferation of these cells in a dose- and time-dependent manner. Nrf2 protein was upregulated and subsequently, its transcriptional activity was increased with greater DNA binding activity and transcription of target genes. Downregulation of Nrf2 led to suppression of PSC-CM activity in BxPC-3, but not in AsPC-1 cells. However, overexpression of Nrf2 alone resulted in increased cell proliferation in both cell lines, and treatment with PSC-CM further enhanced this effect. Activation of Nrf2 pathway resulted in upregulation of metabolic genes involved in pentose phosphate pathway, glutaminolysis and glutathione biosynthesis. Downregulation and inhibition of glucose-6-phosphate-dehydrogenase with siRNA and chemical approaches reduced PSC-mediated cell proliferation. Among the cytokines present in PSC-CM, stromal-derived factor-1 alpha (SDF-1α) and interleukin-6 (IL-6) activated Nrf2 pathway to induce cell proliferation in both cells, as shown with neutralization antibodies, recombinant proteins and signaling inhibitors. Taken together, SDF-1α and IL-6 secreted from PSC induced PDAC cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification.
    Matched MeSH terms: Metabolic Networks and Pathways/drug effects; Metabolic Networks and Pathways/genetics
  14. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Nasaruddin ML, Mori M, et al.
    J Alzheimers Dis, 2018;64(1):249-267.
    PMID: 29889072 DOI: 10.3233/JAD-170880
    We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AβPP/PS1 double transgenic (Tg) Alzheimer's disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aβ interaction or independent of Aβ interaction.
    Matched MeSH terms: Metabolic Networks and Pathways/drug effects*; Metabolic Networks and Pathways/physiology
  15. Rofiee MS, Yusof MI, Abdul Hisam EE, Bannur Z, Zakaria ZA, Somchit MN, et al.
    J Ethnopharmacol, 2015 May 26;166:109-18.
    PMID: 25792013 DOI: 10.1016/j.jep.2015.03.016
    Muntingia calabura L. has been used in Southeast Asia and tropical America as antipyretic, antiseptic, analgesic, antispasmodic and liver tonic. This study aims to determine the acute toxicity and the metabolic pathways involved in the hepatoprotective mechanism of M. calabura.
    Matched MeSH terms: Metabolic Networks and Pathways/drug effects*
  16. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, et al.
    Neurotoxicology, 2019 12;75:89-104.
    PMID: 31521693 DOI: 10.1016/j.neuro.2019.09.008
    Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
    Matched MeSH terms: Metabolic Networks and Pathways/drug effects
  17. Bush JT, Chan MC, Mohammed S, Schofield CJ
    Chembiochem, 2020 06 02;21(11):1647-1655.
    PMID: 31919953 DOI: 10.1002/cbic.201900719
    The hypoxia-inducible factors (HIFs) are key transcription factors in determining cellular responses involving alterations in protein levels in response to limited oxygen availability in animal cells. 2-Oxoglutarate-dependent oxygenases play key roles in regulating levels of HIF and its transcriptional activity. We describe MS-based proteomics studies in which we compared the results of subjecting human breast cancer MCF-7 cells to hypoxia or treating them with a cell-penetrating derivative (dimethyl N-oxalylglycine; DMOG) of the stable 2OG analogue N-oxalylglycine. The proteomic results are consistent with reported transcriptomic analyses and support the proposed key roles of 2OG-dependent HIF prolyl- and asparaginyl-hydroxylases in the hypoxic response. Differences between the data sets for hypoxia and DMOG might reflect context-dependent effects or HIF-independent effects of DMOG.
    Matched MeSH terms: Metabolic Networks and Pathways/genetics
  18. Alafiatayo AA, Lai KS, Ahmad S, Mahmood M, Shaharuddin NA
    Genomics, 2020 01;112(1):484-493.
    PMID: 30946891 DOI: 10.1016/j.ygeno.2019.03.011
    Exposing the skin to solar UV radiation induces cascades of signaling pathways and biological alterations such as redox imbalance, suppression of antioxidant genes and programmed cell death. Therefore, the aim of this study was to use RNA-Seq to unravel the effects of UV radiation on Normal Human Adult Fibroblast cells (NHDF). Cells were exposed to UV (20 mJ/cm2 for 3 mins) and incubated for 24 h. Total mRNA from the cells generated libraries of 72,080,648 and 40,750,939 raw reads from UV-treated and control cells respectively. Of the differentially expressed genes (DEGs) produced 2,007 were up-regulated and 2,791 were down-regulated (fold change ≥2, p 
    Matched MeSH terms: Metabolic Networks and Pathways/genetics
  19. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Metabolic Networks and Pathways/drug effects*
  20. Ganasen P, Khan MR, Kalam MA, Mahmud MS
    Bioprocess Biosyst Eng, 2014 Nov;37(11):2353-9.
    PMID: 24879090 DOI: 10.1007/s00449-014-1213-6
    This paper demonstrates Pseudomonas cepacia lipase catalyzed hydrolysis of p-nitrophenyl palmitate under irradiation of light with wavelengths of 250-750 nm. The reaction follows Michaelis-Menten Kinetics and the light irradiation increases the overall rate of hydrolysis. Using Lineweaver-Burk plot K M and V max values for the reaction in presence of light are found to be 39.07 and 66.67 mM/min/g, respectively; while for the same reaction under dark condition, the values are 7.08 and 10.21 mM/min/g. The linear form of enzyme dependent rate of reaction confirms that no mass-transfer limitations are present and the reaction is a kinetically controlled enzymatic reaction.
    Matched MeSH terms: Metabolic Networks and Pathways
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links