Displaying publications 41 - 60 of 76 in total

Abstract:
Sort:
  1. Lin C, Wei Z, Cheng KK, Xu J, Shen G, She C, et al.
    Sci Rep, 2017 07 28;7(1):6820.
    PMID: 28754994 DOI: 10.1038/s41598-017-07306-5
    Acupuncture is a traditional Chinese medicine therapy that has been found useful for treating various diseases. The treatments involve the insertion of fine needles at acupoints along specific meridians (meridian specificity). This study aims to investigate the metabolic basis of meridian specificity using proton nuclear magnetic resonance (1H NMR)-based metabolomics. Electro-acupuncture (EA) stimulations were performed at acupoints of either Stomach Meridian of Foot-Yangming (SMFY) or Gallbladder Meridian of Foot-Shaoyang (GMFS) in healthy male Sprague Dawley (SD) rats. 1H-NMR spectra datasets of serum, urine, cortex, and stomach tissue extracts from the rats were analysed by multivariate statistical analysis to investigate metabolic perturbations due to EA treatments at different meridians. EA treatment on either the SMFY or GMFS acupoints induced significant variations in 31 metabolites, e.g., amino acids, organic acids, choline esters and glucose. Moreover, a few meridian-specific metabolic changes were found for EA stimulations on the SMFY or GMFS acupoints. Our study demonstrated significant metabolic differences in response to EA stimulations on acupoints of SMFY and GMFS meridians. These results validate the hypothesis that meridian specificity in acupuncture is detectable in the metabolome and demonstrate the feasibility and effectiveness of a metabolomics approach in understanding the mechanism of acupuncture.
    Matched MeSH terms: Metabolome*
  2. Lin X, Liu X, Xu J, Cheng KK, Cao J, Liu T, et al.
    Chin Med, 2019;14:18.
    PMID: 31080495 DOI: 10.1186/s13020-019-0240-2
    Background: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM.

    Methods: Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment.

    Results: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes.

    Conclusions: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention.

    Matched MeSH terms: Metabolome
  3. Loy, S.L., Hamid Jan, J.M., Sirajudeen, K.N.S.
    Malays J Nutr, 2013;19(3):383-399.
    MyJurnal
    Critical time windows exert profound influences on foetal physiological and metabolic profiles, which predispose an individual to later diseases via a 'programming' effect. Obesity has been suggested to be 'programmed' during early life. Foetuses and infants who experience adverse growth are subjected to a higher risk of obesity. However, the key factors that link adverse foetal growth and obesity risk remain obscure. To date, there is considerable evidence showing that the overall balance between free radical damage and the anti.oxidative process being challenged occurs throughout gestation. With the view that pregnancy is a pro-inflammatory state confronted with enhanced oxidative stress, which possesses similar characteristics to obesity (a chronic inflammatory state with increased oxidative stress), oxidative stress is thus biologically plausibly be proposed as the underlying mechanism between this causal-disease relationship. Oxidative stress could act as a programming cue for the development of obesity by inducing complex functional and metabolic deregulations as well as inducing the alteration of the adipogenesis process. Thereby, oxidative stress promotes adipose tissue deposition from early life onwards. The enhancement of fat accumulation further exaggerates oxidative derangement and perpetuates the cycle of adiposity. This review focuses on the oxidative stress pathways in prenatal and early postnatal stages, from the aspects of various endogenous and exogenous oxidative insults. Because oxidative stress is a modifiable pathway, this modifiability suggests a potential therapeutic target to fight the obesity epidemic by understanding the causal factors of oxidant induction.
    Matched MeSH terms: Metabolome
  4. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
    Matched MeSH terms: Metabolome
  5. Mahamad Maifiah MH, Velkov T, Creek DJ, Li J
    Methods Mol Biol, 2019;1946:321-328.
    PMID: 30798566 DOI: 10.1007/978-1-4939-9118-1_28
    Acinetobacter baumannii is rapidly emerging as a multidrug-resistant pathogen responsible for nosocomial infections including pneumonia, bacteremia, wound infections, urinary tract infections, and meningitis. Metabolomics provides a powerful tool to gain a system-wide snapshot of cellular biochemical networks under defined conditions and has been increasingly applied to bacterial physiology and drug discovery. Here we describe an optimized sample preparation method for untargeted metabolomics studies in A. baumannii. Our method provides a significant recovery of intracellular metabolites to demonstrate substantial differences in global metabolic profiles among A. baumannii strains.
    Matched MeSH terms: Metabolome*
  6. Mamat SF, Azizan KA, Baharum SN, Noor NM, Aizat WM
    Data Brief, 2018 Apr;17:1074-1077.
    PMID: 29876463 DOI: 10.1016/j.dib.2018.02.033
    Fruit ripening is a complex phenomenon involving a series of biochemical, physiological and organoleptic changes. Ripening process in mangosteen (Garcinia mangostana Linn.) is unique of which the fruit will only ripen properly if harvested during its middle stage (emergence of purple/pink colour) but not earlier (green stage). The knowledge on the molecular mechanism and regulation behind this phenomenon is still limited. Hence, electrospray ionization liquid chromatography mass spectrometry (ESI-LC-MS) based metabolomics analysis was applied to determine the metabolome of mangosteen ripening. Specifically, mangosteen pericarp, aril and seed were collected at four different ripening stages (stage 0: green, stage 2: yellowish with pink patches, stage 4: brownish red and stage 6: dark purple) and subjected to metabolite profiling analysis. The data provided in this article have been deposited to the EMBL-EBI MetaboLights database (DOI: 10.1093/nar/gks1004. PubMed PMID: 23109552) with the identifier MTBLS595. The complete dataset can be accessed here https://www.ebi.ac.uk/metabolights/MTBLS595.
    Matched MeSH terms: Metabolome
  7. Manah Chandra Changmai, Mohammed Faruque Reza, Zamzuri idris, Regunath Kandasamy, Kastury Gohain
    MyJurnal
    Introduction: Intracranial brain tumour like meningiomas and glioblastomas are most prevalent tumour. The metas- tasis to the brain is one of the major issues in the tumours of the central nervous system. The diagnosis of metastatic and primary brain tumour is incomprehensible with standard magnetic resonance imaging (MRI). The magnetic res- onance spectroscopy (MRS) is basically performed in standard clinical setting for diagnosing and tracking the brain tumour. Method: It is a retrospective study containing 53 patients with MRS. The patients with metastatic tumour (n=10), glioblastomas (n=8) and meningiomas (n=20) are included in the study. Single voxel technique is applied in the tumour core to determine the metabolites. The tumour N-acetyl aspartate (NAA), Choline (Cho), Creatine (Cr), Lactate, Alanine and lipids were analysed. The ratios of NAA/Cr, Cho/NAA and Cho/Cr were recorded and com- pared between the three tumours. The metabolites were detected between short echo time (TE) to long echo time (TE) during MRS. Results: There is a sharp fall of NAA peak in metastatic tumour. The resonance of creatine, lactate and alanine is higher in glioblastomas. A high lipid mean value of 3.13(0.17) is seen in metastatic tumour. The ROC curve shows a low NAA/Cr specificity of 46.7%, high sensitivity of 83.3% in Cho/NAA and Cho/Cr ratio. Conclusion: The metabolic profiles of metastatic brain tumour, glioblastomas and meningioma illustrate a divergence in their description that will assist in planning therapeutic and surgical intervention of these tumours.
    Matched MeSH terms: Metabolome
  8. Massello FL, Chan CS, Chan KG, Goh KM, Donati E, Urbieta MS
    Microorganisms, 2020 Jun 16;8(6).
    PMID: 32560103 DOI: 10.3390/microorganisms8060906
    The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities' profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.
    Matched MeSH terms: Metabolome
  9. Mediani A, Baharum SN
    Methods Mol Biol, 2024;2745:77-90.
    PMID: 38060180 DOI: 10.1007/978-1-0716-3577-3_5
    Metabolomics can provide diagnostic, prognostic, and therapeutic biomarker profiles of individual patients because a large number of metabolites can be simultaneously measured in biological samples in an unbiased manner. Minor stimuli can result in substantial alterations, making it a valuable target for analysis. Due to the complexity and sensitivity of the metabolome, studies must be devised to maintain consistency, minimize subject-to-subject variation, and maximize information recovery. This effort has been aided by technological advances in experimental design, rodent models, and instrumentation. Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of biofluids, such as plasma, urine, and faeces provide the opportunity to identify biomarker change patterns that reflect the physiological or pathological status of an individual patient. Metabolomics has the ultimate potential to be useful in a clinical context, where it could be used to predict treatment response and survival and for early disease diagnosis. During drug treatment, an individual's metabolic status could be monitored and used to predict deleterious effects. Therefore, metabolomics has the potential to improve disease diagnosis, treatment, and follow-up care. In this chapter, we demonstrate how a metabolomics study can be used to diagnose a disease by classifying patients as either healthy or pathological, while accounting for individual variation.
    Matched MeSH terms: Metabolome
  10. Mohammad Noor HS, Ismail NH, Kasim N, Mediani A, Mohd Zohdi R, Ali AM, et al.
    Appl Biochem Biotechnol, 2020 Sep;192(1):1-21.
    PMID: 32215848 DOI: 10.1007/s12010-020-03304-y
    Patients are turning into herbs for the management of diabetes, which cause increasing in the demand of plant-based alternative medicines. Ficus deltoidea or locally known as "Mas Cotek" in Malaysia is a famous herbal plant. However, many varieties of F. deltoidea existed with varied antidiabetic activities inspire us to evaluate in vivo antidiabetic activity of the most available varieties of F. deltoidea. Therefore, antihyperglycemic effect of different varieties of F. deltoidea at dose 250 mg/kg was evaluated on streptozotocin-nicotinamide-induced diabetic rats and further assessed their urinary metabolites using proton nuclear magnetic resonance (1H-NMR). The hyperglycemic blood level improved towards normoglycemic state after 30 days of treatment with standardized extracts of F. deltoidea var. trengganuensis, var. kunstleri, and var. intermedia. The extracts also significantly managed the biochemical parameters in diabetic rats. Metabolomics results showed these varieties were able to manage the altered metabolites of diabetic rats by shifting some of the metabolites back to their normal state. This knowledge might be very important in suggesting the use of these herbs in long-term treatment for diabetes. The most potential variety can be recommended, which may be useful for further pharmacological studies and herbal authentication processes.
    Matched MeSH terms: Metabolome
  11. Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR
    Pathogens, 2020 May 25;9(5).
    PMID: 32466289 DOI: 10.3390/pathogens9050412
    Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis.

    METHODS: The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells.

    RESULTS: The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells.

    CONCLUSION: This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.

    Matched MeSH terms: Metabolome
  12. Ng TL, Karim R, Tan YS, Teh HF, Danial AD, Ho LS, et al.
    PLoS One, 2016;11(6):e0156714.
    PMID: 27258536 DOI: 10.1371/journal.pone.0156714
    Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites. For the five secondary metabolites analyzed (ie. panduratin, pinocembrin, pinostrobin, cardamonin and alpinetin), shoot base had the highest concentrations, followed by watery, dry and embryogenic calli. Furthermore, intracellular auxin levels were found to decrease from dry to watery calli, followed by shoot base and finally embryogenic calli. Our morphological observations showed the presence of fibrils on the cell surface of embryogenic callus while diphenylboric acid 2-aminoethylester staining indicated the presence of flavonoids in both dry and embryogenic calli. Periodic acid-Schiff staining showed that shoot base and dry and embryogenic calli contained starch reserves while none were found in watery callus. This study identified several primary metabolites that could be used as markers of embryogenic cells in B. rotunda, while secondary metabolite analysis indicated that biosynthesis pathways of these important metabolites may not be active in callus and embryogenic tissue.
    Matched MeSH terms: Metabolome
  13. Noorhisham Tan Kofli, Nagahisa K, Shioya S, Shimizu H
    Sains Malaysiana, 2006;35:9-15.
    During fermentation cells are subjected to various kinds of stress. One of the stresses concerned is high osmotic environment, which cells need to encounter in order to continue growing. To understand how cells adapt to this stress condition, information from genome, proteome and metabolome levels are crucial. In yeast cells, it was report that they produce glycerol to avoid depletion of water in the cell that could lead to cell shrinkage and eventually death. Thus, investigation of physiological responses were executed by shake flask method using three different Saccharomyces cerevisiae strains namely s288c, IFO2347 and FY834 which were grown in yeast potato dextrose (YPD) medium under the treatment of sodium chloride (NaCl) and sorbitol at 1M concentration to create the osmotic condition. These agents were added into the medium after 5 hours of fermentation when the cells reached exponential phase and carbon source is still available. The results proved that addition of both NaCl and sorbitol created the osmotic condition during growth resulted in higher accumulation of glycerol and trehalose when compared to the control in all strains. Among these strains, production of glycerol (g glycerol/g cell dry weight) was found highest in IFO2347, followed by s288c and FY834.
    Matched MeSH terms: Metabolome
  14. Pramai P, Abdul Hamid NA, Mediani A, Maulidiani M, Abas F, Jiamyangyuen S
    J Food Drug Anal, 2018 01;26(1):47-57.
    PMID: 29389588 DOI: 10.1016/j.jfda.2016.11.023
    In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR), red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA) model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.
    Matched MeSH terms: Metabolome*
  15. Prime SS, Cirillo N, Hassona Y, Lambert DW, Paterson IC, Mellone M, et al.
    J Oral Pathol Med, 2017 Feb;46(2):82-88.
    PMID: 27237745 DOI: 10.1111/jop.12456
    There is now compelling evidence that the tumour stroma plays an important role in the pathogenesis of cancers of epithelial origin. The pre-eminent cell type of the stroma is carcinoma-associated fibroblasts. These cells demonstrate remarkable heterogeneity with activation and senescence being common stress responses. In this review, we summarise the part that these cells play in cancer, particularly oral cancer, and present evidence to show that activation and senescence reflect a unified programme of fibroblast differentiation. We report advances concerning the senescent fibroblast metabolome, mechanisms of gene regulation in these cells and ways in which epithelial cell adhesion is dysregulated by the fibroblast secretome. We suggest that the identification of fibroblast stress responses may be a valuable diagnostic tool in the determination of tumour behaviour and patient outcome. Further, the fact that stromal fibroblasts are a genetically stable diploid cell population suggests that they may be ideal therapeutic targets and early work in this context is encouraging.
    Matched MeSH terms: Metabolome
  16. Ramadan NS, Wessjohann LA, Mocan A, Vodnar DC, El-Sayed NH, El-Toumy SA, et al.
    Molecules, 2020 May 22;25(10).
    PMID: 32455938 DOI: 10.3390/molecules25102423
    Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38-48%) and glucose (21-25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4-10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7-2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.
    Matched MeSH terms: Metabolome*
  17. Ramaiya SD, Lee HH, Xiao YJ, Shahbani NS, Zakaria MH, Bujang JS
    PLoS One, 2021;16(7):e0255059.
    PMID: 34310644 DOI: 10.1371/journal.pone.0255059
    Passiflora quadrangularis L. belongs to the family Passifloraceae which bears larger fruit with edible juicy mesocarp and pulp known as a good source of phytochemicals. Cultivation and plant management practices are known to influence the phytochemical compositions of agricultural produce. This study aimed to examine the influence of the cultivation practices on the antioxidant activities and secondary metabolites of the organically and conventionally grown P. quadrangularis. Findings revealed organically treated P. quadrangularis plants showed enhancement in their antioxidant properties and secondary metabolites profiles. Among the plant parts, leaves of P. quadrangularis grown organically possessed higher antioxidant activities compared to the conventional in all assays evaluated. The antioxidant activities in the edible parts of the P. quadrangularis fruit have also been enhanced through organic cultivation with significantly higher total phenolic content and DPPH in mesocarp, and the pulp showed higher total flavonoid content, DPPH and FRAP. This observation is supported by a higher level of vitamins and secondary metabolites in the samples. The secondary metabolites profile showed mesocarps were phenolic rich, the pulps were flavonoids rich while leaves showed good composition of phenolics, flavonoids and terpenoids with outstanding antioxidant activities. The common secondary metabolites for organically produced P. quadrangularis in different plant parts include 2-isopropyl-3-methoxycinnamic acid (mesocarp and pulp), myricetin isomers (pulp and leaves), and malvidin-3-O-arabinoside isomers (pulp and leaves). This study confirmed that organic cultivated P. quadrangularis possessed higher antioxidant activities contributed by its vitamins and secondary metabolites.
    Matched MeSH terms: Metabolome*
  18. Razali MTA, Zainal ZA, Maulidiani M, Shaari K, Zamri Z, Mohd Idrus MZ, et al.
    Molecules, 2018 Aug 28;23(9).
    PMID: 30154302 DOI: 10.3390/molecules23092160
    The official standard for quality control of honey is currently based on physicochemical properties. However, this method is time-consuming, cost intensive, and does not lead to information on the originality of honey. This study aims to classify raw stingless bee honeys by bee species origins as a potential classifier using the NMR-LCMS-based metabolomics approach. Raw stingless bee honeys were analysed and classified by bee species origins using proton nuclear magnetic resonance (¹H-NMR) spectroscopy and an ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF MS) in combination with chemometrics tools. The honey samples were able to be classified into three different groups based on the bee species origins of Heterotrigona itama, Geniotrigona thoracica, and Tetrigona apicalis. d-Fructofuranose (H. itama honey), β-d-Glucose, d-Xylose, α-d-Glucose (G. thoracica honey), and l-Lactic acid, Acetic acid, l-Alanine (T. apicalis honey) ident d-Fructofuranose identified via ¹H-NMR data and the diagnostic ions of UHPLC-QTOF MS were characterized as the discriminant metabolites or putative chemical markers. It could be suggested that the quality of honey in terms of originality and purity can be rapidly determined using the classification technique by bee species origins via the ¹H-NMR- and UHPLC-QTOF MS-based metabolomics approach.
    Matched MeSH terms: Metabolome
  19. Saeed OA, Sazili AQ, Akit H, Alimon AR, Samsudin AA
    Animals (Basel), 2019 Oct 11;9(10).
    PMID: 31614434 DOI: 10.3390/ani9100781
    Twenty-seven Dorper lambs were used to determine the effect of supplementing corn as a source of energy into the palm kernel cake (PKC) urea-treated rice straw basal diet on the blood metabolic profile and metals in lambs. The lambs were randomly allotted to three experimental treatments according to their initial body weight for a 120 day trial. Dietary treatments were: T1 (control diet) = 75.3% of PKC + 0% corn, T2 = 70.3% of PKC + 5% corn, and T3 = 65.3% of PKC + 10% corn. The results of this study indicated that copper (Cu), selenium (Se), zinc (Zn), and iron (Fe) concentration intake, retention, and its absorption from the gut and apparent mineral digestibility were highly significant for the levels of corn supplementation. The biochemical and hematological parameters remained within normal levels with the treatments, but the white blood cell, eosinophil count, cholesterol, and low-density lipoprotein cholesterol (LDL) were significantly higher in T3. Treatment 3 significantly increased the concentration of Se and Fe, while Zn was reduced in the blood serum of lambs on day 120. The result shows that the inclusion of corn has no effect on the hematological and biochemical parameters of lambs after incorporating corn into the PKC-based diet at 5% and 10%.
    Matched MeSH terms: Metabolome
  20. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Metabolome
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links