Displaying publications 41 - 60 of 437 in total

Abstract:
Sort:
  1. Sadrolhosseini AR, Krishnan G, Shafie S, Abdul Rashid S, Wadi Harun S
    Molecules, 2020 Dec 09;25(24).
    PMID: 33316885 DOI: 10.3390/molecules25245798
    This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy were used to categorize the prepared samples. The UV-visible and z-scan techniques provided optical parameters such as linear and nonlinear refractive indices in the range of 1.56759 to 1.81288 and 7.3769 × 10-10 cm2 W-1 to 9.5269 × 10-10 cm2 W-1 and the nonlinear susceptibility was measured in the range of 5.46 × 10-8 to 6.97 × 10-8 esu. The thermal effusivity of prepared samples, which were measured using the photoacoustic technique, were in the range of 0.0941 W s1/2 cm-2 K-1 to 0.8491 W s1/2 cm-2 K-1. The interaction of the prepared sample with fluoride was investigated using a Raman spectrometer. Consequently, the intensity of the Raman signal decreased with the increasing concentration of fluoride, and the detection limit is about 0.1 ppm.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  2. Hui H, Gopinath SCB, Ismail ZH, Chen Y, Pandian K, Velusamy P
    Biotechnol Appl Biochem, 2023 Apr;70(2):581-591.
    PMID: 35765758 DOI: 10.1002/bab.2380
    Myocardial infarction (MI) is highly related to cardiac arrest leading to death and organ damage. Radiological techniques and electrocardiography have been used as preliminary tests to diagnose MI; however, these techniques are not sensitive enough for early-stage detection. A blood biomarker-based diagnosis is an immediate solution, and due to the high correlation of troponin with MI, it has been considered to be a gold-standard biomarker. In the present research, the cardiac biomarker troponin I (cTnI) was detected on an interdigitated electrode sensor with various surface interfaces. To detect cTnI, a capture aptamer-conjugated gold nanoparticle probe and detection antibody probe were utilized and compared through an alternating sandwich pattern. The surface metal oxide morphology of the developed sensor was proven by microscopic assessments. The limit of detection with the aptamer-gold-cTnI-antibody sandwich pattern was 100 aM, while it was 1 fM with antibody-gold-cTnI-aptamer, representing 10-fold differences. Further, the high performance of the sensor was confirmed by selective cTnI determination in serum, exhibiting superior nonfouling. These methods of determination provide options for generating novel assays for diagnosing MI.
    Matched MeSH terms: Metal Nanoparticles*
  3. Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, et al.
    Int J Mol Sci, 2012;13(10):12242-58.
    PMID: 23202896 DOI: 10.3390/ijms131012242
    ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10-3 min-1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  4. Chengzheng W, Jiazhi W, Shuangjiang C, Swamy MK, Sinniah UR, Akhtar MS, et al.
    J Nanosci Nanotechnol, 2018 May 01;18(5):3673-3681.
    PMID: 29442882 DOI: 10.1166/jnn.2018.15364
    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  5. Faried M, Suga K, Okamoto Y, Shameli K, Miyake M, Umakoshi H
    ACS Omega, 2019 Aug 27;4(9):13687-13695.
    PMID: 31497686 DOI: 10.1021/acsomega.9b01073
    A gold nanoparticle (AuNP) has a localized surface plasmon resonance peak depending on its size, which is often utilized for surface-enhanced Raman scattering (SERS). To obtain information on the cholesterol (Chol)-incorporated lipid membranes by SERS, AuNPs (5, 100 nm) were first functionalized by 1-octanethiol and then modified by lipids (AuNP@lipid). In membrane surface-enhanced Raman spectroscopy (MSERS), both signals from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and Chol molecules were enhanced, depending on preparation conditions (size of AuNPs and lipid/AuNP ratio). The enhancement factors (EFs) were calculated to estimate the efficiency of AuNPs on Raman enhancement. The size of AuNP100nm@lipid was 152.0 ± 12.8 nm, which showed an surface enhancement Raman spectrum with an EF2850 value of 111 ± 9. The size of AuNP5nm@lipid prepared with a lipid/AuNP ratio of 1.38 × 104 (lipid molecule/particle) was 275.3 ± 20.2 nm, which showed the highest enhancement with an EF2850 value of 131 ± 21. On the basis of fluorescent probe analyses, the membrane fluidity and polarity of AuNP@lipid were almost similar to DOPC/Chol liposome, indicating an intact membrane of DOPC/Chol after modification with AuNPs. Finally, the membrane properties of AuNP@lipid systems were also discussed on the basis of the obtained MSERS signals.
    Matched MeSH terms: Metal Nanoparticles
  6. Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, et al.
    Int J Biol Macromol, 2020 Mar 15;147:853-866.
    PMID: 31739066 DOI: 10.1016/j.ijbiomac.2019.09.245
    Gums; composed of polysaccharides, carbohydrates, proteins, and minerals, are high molecular weight hydrophilic compounds with several biological applications. This study describes the nutritional and toxic elements content, chemical composition, synthesis of silver nanoparticles (G-AgNPs), and pharmacological and catalytic properties of Prunus armeniaca (apricot), Prunus domestica (plums), Prunus persica (peaches), Acacia modesta (phulai), Acacia arabica (kikar), and Salmalia malabarica (silk cotton tree) gums. The elemental contents were analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ICP-mass spectrometry (ICP-MS). NMR spectroscopy was used for the identification of class of compounds in the mixture, their functional groups were determined through FTIR techniques, and plasmon resonance and size of G-AgNPs through UV-Vis spectroscopic technique and transmission electron microscopy (TEM). From the results, nutritional elements were present at appreciable concentrations, whereas toxic elements showed content below the maximum permissible ranges. Using the elemental data, linear discriminant and principal component analyses classified the gums to 99.9% variability index. Furthermore, G-AgNPs exhibited significant antioxidant, antibacterial, and redox catalytic potential. Hence, the subject G-AgNPs could have promising nutritional, therapeutic and environmental remediation applications.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  7. Lee SY, Hairul Bahara NH, Choong YS, Lim TS, Tye GJ
    J Colloid Interface Sci, 2014 Nov 01;433:183-188.
    PMID: 25129336 DOI: 10.1016/j.jcis.2014.07.033
    DNA-templated silver nanoclusters (AgNC) are a class of subnanometer sized fluorophores with good photostability and brightness. It has been applied as a diagnostic tool mainly for deoxyribonucleic acid (DNA) detection. Integration of DNA oligomers to generate AgNCs is interesting as varying DNA sequences can result in different fluorescence spectra. This allows a simple fluorescence shifting effect to occur upon DNA hybridization with the hybridization efficiency being a pronominal factor for successful shifting. The ability to shift the fluorescence spectra as a result of hybridization overcomes the issue of background intensities in most fluorescent based assays. Here we describe an optimized method for the detection of single-stranded and double-stranded synthetic forkhead box P3 (FOXP3) target by hybridization with the DNA fluorescence shift sensor. The system forms a three-way junction by successful hybridization of AgNC, G-rich strand (G-rich) to the target DNA, which generated a shift in fluorescence spectra with a marked increase in fluorescence intensity. The DNA fluorescence shift sensor presents a rapid and specific alternative to conventional DNA detection.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  8. Lee SY, Fazlina N, Tye GJ
    Anal Biochem, 2019 09 15;581:113352.
    PMID: 31260647 DOI: 10.1016/j.ab.2019.113352
    DNA-templated silver nanocluster (AgNC), a new promising fluorescence probe has gained importance in biosensing and bioimaging in recent years. We employed a label-free AgNC to detect an intracellular transcription factor known as forkhead box p3 (FOXP3), which is the master regulator of regulatory T cells (Tregs) suppressive function. We developed an optimized method for the detection of messenger ribonucleic acid (mRNA) of FOXP3 by hybridizing AgNC and G-rich to the target FOXP3 mRNA of a MCF-7 cells. MCF-7 cells are chosen as a model as it readily expresses FOXP3. The hybridized samples were examined with UV illuminator and further verified with fluorescence spectroscopy, fluorescence microscope and flow cytometry. The successful hybridization of a three-way junction with AgNC, G-rich and mRNA FOXP3 target generated an improved fluorescence intensity with a spectral shift. We have successfully delivered the green fluorescing AgNC and G-rich into MCF-7 cells, producing a shift to red fluorescing cells corroborated by flow cytometry results. In summary, our approach enables the detection of intracellular FOXP3 nucleic acid and holds considerable potential in establishing a non-lethal intracellular detection system which would be crucial for the isolation of regulatory T-cells (Tregs) when combined with other cell surface markers.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  9. Talari MK, Abdul Majeed AB, Tripathi DK, Tripathy M
    Chem Pharm Bull (Tokyo), 2012;60(7):818-24.
    PMID: 22790812
    The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. Lah NAC, Gray R, Trigueros S
    Microb Cell Fact, 2021 Feb 17;20(1):46.
    PMID: 33596912 DOI: 10.1186/s12934-020-01478-y
    With the long-term goal of developing an ultra-sensitive microcantilever-based biosensor for versatile biomarker detection, new controlled bioreceptor-analytes systems are being explored to overcome the disadvantages of conventional ones. Gold (Au) microwires have been used as a probe to overcome the tolerance problem that occurs in response to changes in environmental conditions. However, the cytotoxicity of Au microwires is still unclear. Here, we examined the cytotoxicity of Au microwires systems using both commercial and as-synthesised Au microwires. In vitro experiments show that commercial Au microwires with an average quoted length of 5.6 µm are highly toxic against Gram-negative Escherichia coli (E. coli) at 50 µg/mL. However, this toxicity is due to the presence of CTAB surfactant not by the microwires. Conversely, the as-synthesised Au microwires show non-cytotoxicity even at the maximum viable concentration (330 µg/mL). These findings may lead to the development of potentially life-saving cytotoxicity-free biosensors for an early diagnostic of potential diseases.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  11. Wren AW, Hassanzadeh P, Placek LM, Keenan TJ, Coughlan A, Boutelle LR, et al.
    Macromol Biosci, 2015 Aug;15(8):1146-58.
    PMID: 25923463 DOI: 10.1002/mabi.201500109
    Silver (Ag) coated bioactive glass particles (Ag-BG) were formulated and compared to uncoated controls (BG) in relation to glass characterization, solubility and microbiology. X-ray diffraction (XRD) confirmed a crystalline AgNP surface coating while ion release studies determined low Ag release (<2 mg/L). Cell culture studies presented increased cell viability (127 and 102%) with lower liquid extract (50 and 100 ml/ml) concentrations. Antibacterial testing of Ag-BG in E. coli, S. epidermidis and S. aureus significantly reduced bacterial cell viability by 60-90%. Composites of Ag-BG/CMC-Dex Hydrogels were formulated and characterized. Agar diffusion testing was conducted where Ag-BG/hydrogel composites produced the largest inhibition zones of 7 mm (E. coli), 5 mm (S. aureus) and 4 mm (S. epidermidis).
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  12. Thavanathan J, Huang NM, Thong KL
    Biosens Bioelectron, 2014 May 15;55:91-8.
    PMID: 24368225 DOI: 10.1016/j.bios.2013.11.072
    The unique property of gold nanoparticles (Au NP) to induce colour change and the versatility of graphene oxides (GO) in surface modification makes them ideal in the application of colorimetric biosensor. Thus we developed a label free optical method to detect DNA hybridization through a visually observed colour change. The Au NP is conjugated to a DNA probe and is allowed to hybridize with the DNA target to the GO thus causing a change in colour from pinkish-red to purplish blue. Spectrophometry analysis gave a wavelength shift of 22 nm with 1 µM of DNA target. Sensitivity testing using serially diluted DNA conjugated GO showed that the optimum detection was at 63 nM of DNA target with the limit at 8 nM. This proves the possibility for the detection of DNA hybridization through the use of dual nanoparticle system by visual observation.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  13. Thavanathan J, Huang NM, Thong KL
    Int J Nanomedicine, 2015;10:2711-22.
    PMID: 25897217 DOI: 10.2147/IJN.S74753
    We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles-conjugated DNA probe onto the surface of the secondary graphene oxide-conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  14. Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, et al.
    PLoS One, 2015;10(6):e0128973.
    PMID: 26107378 DOI: 10.1371/journal.pone.0128973
    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  15. Mok PL, Leow SN, Koh AE, Mohd Nizam HH, Ding SL, Luu C, et al.
    Int J Mol Sci, 2017 Feb 08;18(2).
    PMID: 28208719 DOI: 10.3390/ijms18020345
    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
    Matched MeSH terms: Metal Nanoparticles
  16. Perwez M, Lau SY, Hussain D, Anboo S, Arshad M, Thakur P
    Colloids Surf B Biointerfaces, 2023 May;225:113241.
    PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241
    Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
    Matched MeSH terms: Metal Nanoparticles*
  17. Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al.
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:167-75.
    PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040
    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
    Matched MeSH terms: Metal Nanoparticles/toxicity*; Metal Nanoparticles/ultrastructure
  18. Nagaraja S, Ahmed SS, D R B, Goudanavar P, M RK, Fattepur S, et al.
    Molecules, 2022 Jul 06;27(14).
    PMID: 35889209 DOI: 10.3390/molecules27144336
    Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats' liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.
    Matched MeSH terms: Metal Nanoparticles*
  19. Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY
    Molecules, 2011 Aug 25;16(9):7237-48.
    PMID: 21869751 DOI: 10.3390/molecules16097237
    In this research, silver nanoparticles (AgNPs) were synthesized in chitosan (Cts), Cts/gelatin and gelatin suspensions using a chemical reducing agent. Cts and gelatin were used as natural stabilizers and solid support, whereas AgNO(3) was used as the silver precursor. Sodium borohydride (NaBH(4)) was used as the reducing agent. The properties of AgNPs in Cts, Cts/gelatin and gelatin bionanocomposites (BNCs) were studied in terms of their surface plasmon resonance, crystalline structure, average diameter size, particle distributions, surface topography and functional groups. All the samples were characterized by UV-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  20. Irshad MA, Nawaz R, Rehman MZU, Adrees M, Rizwan M, Ali S, et al.
    Ecotoxicol Environ Saf, 2021 Apr 01;212:111978.
    PMID: 33561774 DOI: 10.1016/j.ecoenv.2021.111978
    Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO2) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs. Plenty of work has been reported on the green, chemical, physical and biological synthesis of TiO2 NPs and these NPs can be characterized through high tech. instruments. In the present review, dense data have been presented on the comparative synthesis of TiO2 NPs with different characteristics and their wide range of applications. Among the TiO2 NPs synthesis techniques, the green methods have been proven to be efficient than chemical synthesis methods because of the less use of precursors, time-effectiveness, and energy-efficiency during the green synthesis procedures. Moreover, this review describes the types of plants (shrubs, herbs and trees), microorganisms (bacteria, fungi and algae), biological derivatives (proteins, peptides, and starches) employed for the synthesis of TiO2 NPs. The TiO2 NPs can be effectively used for the treatment of polluted water and positively affected the plant physiology especially under abiotic stresses but the response varied with types, size, shapes, doses, duration of exposure, metal species along with other factors. This review also highlights the regulating features and future standpoints for the measurable enrichment in TiO2 NPs product and perspectives of TiO2 NPs reliable application.
    Matched MeSH terms: Metal Nanoparticles/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links