METHODS: A total of 51 subjects qualified to take part in this quasi-experimental study. They were assigned to either the resistance exercise group (n = 26) or control group (n = 25). The mean age of the 45 participants who completed the program was 70.7 (SD = 6.6). The exercise group met twice per week and performing one to three sets of 8 to 10 repetitions for each of nine lower-limb elastic resistance exercises. All exercises were conducted at low to moderate intensities in sitting or standing positions. The subjects were tested at baseline and 6 and 12 weeks into the program.
RESULTS: The results showed statistically significant improvements in lower-limb muscle strength as measured by five times sit-to-stand test (%Δ = 22.6) and dynamic balance quantified by the timed up-and-go test (%Δ = 18.7), four-square step test (%Δ = 14.67), and step test for the right (%Δ = 18.36) and left (%Δ = 18.80) legs. No significant changes were observed in static balance as measured using the tandem stand test (%Δ = 3.25), and one-leg stand test with eyes opened (%Δ = 9.58) and eyes closed (%Δ = -0.61) after completion of the program.
CONCLUSION: The findings support the feasibility and efficacy of a simple and inexpensive resistance training program to improve lower-limb muscle strength and dynamic balance among the institutionalized older adults.
METHODS: Muscle fibre angles of lumbar extensor muscles, thoracolumbar curvature and lumbar extensor muscle strength were examined in 26 young (mean age 27.9, SD 5.2) and 26 older (mean age 72.1, SD 5.9) participants. Pearson's correlation was employed to determine the association among lumbar extensor muscle fibre angle, thoracolumbar curvature, age, gender and lumbar extensor muscle strength. Multiple stepwise linear regression analysis was used to identify significant determinants of lumbar extensor muscle strength.
RESULTS: The results demonstrated a significant correlation between lumbar extensor muscle strength, muscle fibre angle, age and gender. In the step wise regression analysis, both gender and age were identified as the most robust determinant for lumbar extensor muscle strength in older adults. However, gender was the only determinant of muscle strength in the young.
CONCLUSION: These results suggest that the decline in the lumbar extensor muscle strength in older adults was more dependent on age when compared to younger adults.
METHODS: A systematic search was conducted in PubMed, Scopus, ScienceDirect, Web of Science, and Google Scholar from 2019 to 2021. Twenty-seven studies, which assessed a total of 1525 patients, were included and analysed.
RESULTS: Overall, data revealed significant improvements in the following parameters: physical function, dyspnoea, pulmonary function, quality of life (QOL), lower limb endurance and strength, anxiety, depression, physical activity level, muscle strength, oxygen saturation, fatigue, C-reactive protein (CRP), interleukin 6 (IL-6), tumour necrosis factor-alpha (TNF-α), lymphocyte, leukocytes, and a fibrin degradation product (D-dimer).
CONCLUSIONS: Physical training turns out to be an effective therapy that minimises the severity of COVID-19 in the intervention group compared to the standard treatment. Therefore, physical training could be incorporated into conventional treatment of COVID-19 patients. More randomized controlled studies with follow-up evaluations are required to evaluate the long-term advantages of physical training. Future research is essential to establish the optimal exercise intensity level and assess the musculoskeletal fitness of recovered COVID-19 patients. This trial is registered with CRD42021283087.
OBJECTIVES: To investigate the diaphragm function, respiratory muscle strength, and pulmonary function in patients with CNP. In addition, their associations were also examined.
DESIGN: A case-control study.
METHODS: A total of 54 participants were recruited including 25 patients with CNP (CNP group) and 29 healthy adults (CON group). Pulmonary function including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), and respiratory muscle strength represented by maximal inspiratory (MIP) and maximal expiratory pressure (MEP), as well as diaphragm function including ultrasonographic measures of mobility and thickness changes during maximal inspiration and expiration were assessed in all participants. Additionally, the intensity of pain and disability were evaluated using a Visual Analog Scale and Neck Disability Index only in patients with CNP.
RESULTS: Significant reductions of the FVC, FEV1, MIP, and MEP were found in the CNP group compared to the CON group (p strength, and pulmonary function were observed in patients with CNP. Patients with smaller diaphragm thickness change had poorer pulmonary function and reduced maximal expiratory muscle strength. Diaphragm assessment and intervention may be considered in CNP management.
Methods: Nineteen young state-level weightlifters performed concentric strength tests of the upper limbs using an isokinetic dynamometer. Peak torque/body weight was measured for each weightlifter in dominant and non-dominant limbs.
Results: Peak torque/body weight was significantly different in external rotation (p 0.05). Time to peak torque in external rotation was less in the dominant than in the non-dominant limb. However, opposite results were obtained in external rotation, whereby time to peak torque was longer in the dominant limb compared to the non-dominant limb. Similarly, no significant difference was found between dominant and non-dominant limbs in terms of average power (p > 0.05).
Conclusions: The findings of this study may help in establishing potential imbalance in variables of muscular contractions between dominant and non-dominant limbs of weightlifters. This may help to maximise performance and minimise potential shoulder injury.
METHODS: 93 patients and 78 spousal/sibling controls underwent comprehensive assessment of diet, clinical status, muscle strength/performance, frailty, body composition (using dual-energy X-ray absorptiometry), and serum levels of neurogastrointestinal hormones and inflammatory markers.
RESULTS: PD patients were older than controls (66.0 ± 8.5 vs. 62.4 ± 8.4years, P = 0.003). Mean body mass index (24.0 ± 0.4 vs. 25.6 ± 0.5kg/m2, Padjusted = 0.016), fat mass index (7.4 ± 0.3 vs. 9.0 ± 0.3kg/m2, Padjusted<0.001), and whole-body fat percentage (30.7 ± 0.8 vs. 35.7 ± 0.9%, Padjusted<0.001) were lower in patients, even after controlling for age and gender. There were no between-group differences in skeletal muscle mass index and whole-body bone mineral density. Body composition parameters did not correlate with disease duration or motor severity. Reduced whole-body fat percentage was associated with higher risk of motor response complications as well as higher levels of insulin-growth factor-1 and inflammatory markers. PD patients had a higher prevalence of sarcopenia (17.2% vs. 10.3%, Padjusted = 0.340) and frailty (69.4% vs. 24.2%, Padjusted = 0.010). Older age and worse PD motor severity were predictors of frailty in PD.
CONCLUSIONS: We found reduced body fat with relatively preserved skeletal muscle mass, and a high prevalence of frailty, in PD. Further studies are needed to understand the patho-mechanisms underlying these alterations.