Displaying publications 41 - 60 of 96 in total

Abstract:
Sort:
  1. Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA
    Int J Biol Macromol, 2021 Jun 01;180:242-251.
    PMID: 33737181 DOI: 10.1016/j.ijbiomac.2021.03.072
    Fatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids. The 1155 bp open reading frame of Δ12 fatty acid desaturase (FAD12) from Brassica napus codes for 383 amino acid residues with a molecular weight of 44 kDa. It was expressed in Escherichia coli at 37 °C in soluble and insoluble forms when induced with 0.5 mM IPTG. Soluble FAD12 has been purified using Ni2+-Sepharose affinity chromatography with a total protein yield of 0.728 mg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that desaturase activity of FAD12 could produce linoleic acid from oleic acid at a retention time of 17.6 with a conversion rate of 47%. Characterization of purified FAD12 revealed the optimal temperature of FAD12 was 50 °C with 2 mM preferred substrate concentration of oleic acid. Analysis of circular dichroism (CD) showed FAD12 was made up of 47.3% and 0.9% of alpha-helix and β-sheet secondary structures. The predicted Tm value was 50.2 °C.
    Matched MeSH terms: Open Reading Frames
  2. Mat-Rahim NA, Rashid TRTA, Suppiah J, Thayan R, Yusof AM, Sa'at Z
    Asian Pac J Trop Dis, 2015 Jul;5(7):543-546.
    PMID: 32289031 DOI: 10.1016/S2222-1808(15)60833-7
    Objective: To describe the complete nucleocapsid (N) gene region of Middle East respiratory syndrome coronavirus (MERS-CoV) from imported case in Malaysia and the relations with human- and camel-derived MERS-CoV.

    Methods: Combination of throat and nasal swab specimens was subjected to viral RNA extraction. For screening, the extracted RNA was subjected to real-time RT-PCR targeting upstream of E gene, open reading frame 1b and open reading frame 1a. For confirmation, the RNA was subjected to RT-PCR targeting partial part of the RNA-dependent RNA polymerase and nucleocapsid, followed by amplification of complete N gene region. Nucleotide sequencing of the first Malaysian case of MERS-CoV was performed following the confirmation with real-time RT-PCR detection.

    Results: Initial analysis of partial RNA-dependent RNA polymerase and N gene revealed that the nucleotides had high similarity to Jeddah_1_2013 strain. Analysis of complete N gene region (1 242 nucleotides) from the case showed high similarity and yet distinct to the nucleotide sequences of camel-derived MERS-CoV.

    Conclusions: From the finding, there are possibilities that the patient acquired the infection from zoonotic transmission from dromedary camels.

    Matched MeSH terms: Open Reading Frames
  3. Arsad H, Sudesh K, Nazalan N, Muhammad TS, Wahab H, Razip Samian M
    Trop Life Sci Res, 2009 Dec;20(2):1-14.
    PMID: 24575175 MyJurnal
    The (R)-3-hydroxyacyl-ACP-CoA transferase catalyses the conversion of (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA derivatives, which serves as the ultimate precursor for polyhydroxyalkanoate (PHA) polymerisation from unrelated substrates in pseudomonads. PhaG was found to be responsible for channelling precursors for polyhydroxyalkanoate (PHA) synthase from a de novo fatty acid biosynthesis pathway when cultured on carbohydrates, such as glucose or gluconate. The phaG gene was cloned from Pseudomonas sp. USM 4-55 using a homologous probe. The gene was located in a 3660 bp Sal I fragment (GenBank accession number EU305558). The open reading frame (ORF) was 885 bp long and encoded a 295 amino acid protein. The predicted molecular weight was 33251 Da, and it showed a 62% identity to the PhaG of Pseudomonas aeruginosa. The function of the cloned phaG of Pseudomonas sp. USM 4-55 was confirmed by complementation studies. Plasmid pBCS39, which harboured the 3660 bp Sal I fragment, was found to complement the PhaG-mutant heterologous host cell, Pseudomonas putida PhaGN-21. P. putida PhaGN-21, which harboured pBCS39, accumulated PHA that accounted for up to 18% of its cellular dry weight (CDW). P. putida PhaGN-21, which harboured the vector alone (PBBR1MCS-2), accumulated only 0.6% CDW of PHA.
    Matched MeSH terms: Open Reading Frames
  4. Yong HS, Song SL, Lim PE, Eamsobhana P, Suana IW
    Genetica, 2016 Oct;144(5):513-521.
    PMID: 27502829
    Zeugodacus caudatus is a pest of pumpkin flowers. It has a Palearctic and Oriental distribution. We report here the complete mitochondrial genome of the Malaysian and Indonesian samples of Z. caudatus determined by next-generation sequencing of genomic DNA and determine their taxonomic status as sibling species and phylogeny with other taxa of the genus Zeugodacus. The whole mitogenome of both samples possessed 37 genes (13 protein-coding genes-PCGs, 2 rRNA and 22 tRNA genes) and a control region. The mitogenome of the Indonesian sample (15,885 bp) was longer than that of the Malaysian sample (15,866 bp). In both samples, TΨC-loop was absent in trnF and DHU-loop was absent in trnS1. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with the two samples of Z. caudatus forming a sister group and the genus Zeugodacus was monophyletic. The Malaysian and Indonesian samples of Z. caudatus have a genetic distance of p = 7.8 % based on 13 PCGs and p = 7.0 % based on 15 mitochondrial genes, indicating status of sibling species. They are proposed to be accorded specific status as members of a species complex.
    Matched MeSH terms: Open Reading Frames
  5. Rusdi NA, Goh HH, Sabri S, Ramzi AB, Mohd Noor N, Baharum SN
    Molecules, 2018 06 06;23(6).
    PMID: 29882808 DOI: 10.3390/molecules23061370
    Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of β-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.
    Matched MeSH terms: Open Reading Frames
  6. Karim KMR, Husaini A, Sing NN, Sinang FM, Roslan HA, Hussain H
    3 Biotech, 2018 Apr;8(4):204.
    PMID: 29607285 DOI: 10.1007/s13205-018-1225-z
    In this study, an alpha-amylase enzyme from a locally isolated Aspergillus flavus NSH9 was purified and characterized. The extracellular α-amylase was purified by ammonium sulfate precipitation and anion-exchange chromatography at a final yield of 2.55-fold and recovery of 11.73%. The molecular mass of the purified α-amylase was estimated to be 54 kDa using SDS-PAGE and the enzyme exhibited optimal catalytic activity at pH 5.0 and temperature of 50 °C. The enzyme was also thermally stable at 50 °C, with 87% residual activity after 60 min. As a metalloenzymes containing calcium, the purified α-amylase showed significantly increased enzyme activity in the presence of Ca2+ ions. Further gene isolation and characterization shows that the α-amylase gene of A. flavus NSH9 contained eight introns and an open reading frame that encodes for 499 amino acids with the first 21 amino acids presumed to be a signal peptide. Analysis of the deduced peptide sequence showed the presence of three conserved catalytic residues of α-amylase, two Ca2+-binding sites, seven conserved peptide sequences, and several other properties that indicates the protein belongs to glycosyl hydrolase family 13 capable of acting on α-1,4-bonds only. Based on sequence similarity, the deduced peptide sequence of A. flavus NSH9 α-amylase was also found to carry two potential surface/secondary-binding site (SBS) residues (Trp 237 and Tyr 409) that might be playing crucial roles in both the enzyme activity and also the binding of starch granules.
    Matched MeSH terms: Open Reading Frames
  7. Jensen KS, Adams R, Bennett RS, Bernbaum J, Jahrling PB, Holbrook MR
    PLoS One, 2018;13(6):e0199534.
    PMID: 29920552 DOI: 10.1371/journal.pone.0199534
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that can result in severe pulmonary disease and fatal encephalitis in humans and is responsible for outbreaks in Bangladesh, Malaysia, Singapore, India and possibly the Philippines. NiV has a negative-sense RNA genome that contains six genes and serves as a template for production of viral mRNA transcripts. NiV mRNA transcripts are subsequently translated into viral proteins. Traditionally, NiV quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) assays have relied on using primer sets that amplify a target (N that encodes the nucleocapsid) within the coding region of the viral gene that also amplifies viral mRNA. Here we describe a novel one-step qRT-PCR assay targeting the intergenic region separating the viral F and G proteins, thereby eliminating amplification of the viral mRNA. This assay is more accurate than the traditional qRT-PCR in quantifying concentrations of viral genomic RNA.
    Matched MeSH terms: Open Reading Frames
  8. Low TY, Mohtar MA, Ang MY, Jamal R
    Proteomics, 2019 05;19(10):e1800235.
    PMID: 30431238 DOI: 10.1002/pmic.201800235
    Understanding the relationship between genotypes and phenotypes is essential to disentangle biological mechanisms and to unravel the molecular basis of diseases. Genes and proteins are closely linked in biological systems. However, genomics and proteomics have developed separately into two distinct disciplines whereby crosstalk among scientists from the two domains is limited and this constrains the integration of both fields into a single data modality of useful information. The emerging field of proteogenomics attempts to address this by building bridges between the two disciplines. In this review, how genomics and transcriptomics data in different formats can be utilized to assist proteogenomics application is briefly discussed. Subsequently, a much larger part of this review focuses on proteogenomics research articles that are published in the last five years that answer two important questions. First, how proteogenomics can be applied to tackle biological problems is discussed, covering genome annotation and precision medicine. Second, the latest developments in analytical technologies for data acquisition and the bioinformatics tools to interpret and visualize proteogenomics data are covered.
    Matched MeSH terms: Open Reading Frames
  9. Suhana O, Nazni WA, Apandi Y, Farah H, Lee HL, Sofian-Azirun M
    Heliyon, 2019 Dec;5(12):e02682.
    PMID: 31867449 DOI: 10.1016/j.heliyon.2019.e02682
    Chikungunya virus (CHIKV) is maintained in the sylvatic cycle in West Africa and is transmitted by Aedes mosquito species to monkeys. In 2006, four verified CHIKV isolates were obtained during a survey of arboviruses in monkeys (Macaca fascicularis) in Pahang state, Peninsular Malaysia. RNA was extracted from the CHIKV isolates and used in reverse transcription polymerase chain reactions (RT-PCR) to amplify PCR fragments for sequencing. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the whole viral sequence. A total of 11,238 base pairs (bp) corresponding to open reading frames (ORFs) from our isolates and 47 other registered isolates in the National Center for Biotechnology Information (NCBI) were used to elucidate sequences, amino acids, and phylogenetic relationships and to estimate divergence times by using MEGA 7.0 and the Bayesian Markov chain Monte Carlo method. Phylogenetic analysis revealed that all CHIKV isolates could be classified into the Asian genotype and clustered with Bagan Panchor clades, which are associated with the chikungunya outbreak reported in 2006, with sequence and amino acid similarities of 99.9% and 99.7%, respectively. Minor amino acid differences were found between human and non-human primate isolates. Amino acid analysis showed a unique amino acid at position 221 in the nsP1region, at which a glycine (G) was found only in monkey isolates, whereas arginine (R) was found at the same position only in human isolates. The time to the most recent common ancestor (MRCA) estimation indicated that CHIKV probably started to diverge from human to non-human primates in approximately 2004 in Malaysia. The results suggested that CHIKV in non-human primates probably resulted from the spillover of the virus from humans. The study will be helpful in understanding the movement and evolution of CHIKV in Malaysia and globally.
    Matched MeSH terms: Open Reading Frames
  10. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
    Matched MeSH terms: Open Reading Frames
  11. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
    Matched MeSH terms: Open Reading Frames
  12. Chuah LO, Shamila Syuhada AK, Mohamad Suhaimi I, Farah Hanim T, Rusul G
    Food Res Int, 2018 03;105:743-751.
    PMID: 29433269 DOI: 10.1016/j.foodres.2017.11.066
    We investigated the genetic relatedness, antibiotic resistance and biofilm-producing ability of 114 strains of Salmonella, belonged to three serotypes (Corvallis, Brancaster and Albany), isolated from naturally contaminated poultry and their environment in wet markets and smale-scale processing plant from northern Malaysia. Pulsed-field gel electrophoresis revealed that Salmonella strains isolated from various wet markets were clonally related, suggesting the widespread dissemination of these three serotypes in northern Malaysia. All except one strain of Salmonella were resistant to more than two classes of antibiotics, hence regarded as multidrug resistant (MDR). Resistance to sulphonamide (96.5%), ampicillin (89.5%), tetracycline (85.1%), chloramphenicol (75.4%), trimethoprim (68.4%), trimethoprim-sulfamethoxazole (67.5%), streptomycin (58.8%) and nalidixic acid (44.4%) were observed. Resistance determinants, floR, cmlA, tetA, tetB, tetG, temB, blaPSE-1, sul1, sul2, qnrA, qnrS, strA and aadA were detected by PCR among MDR Salmonella strains. Seventy-six strains (66.7%) harboured class-I integrons. The gene cassettes identified were dfrA1, dfrA12, aadA2 and an open reading frame orfC with unknown function. All Salmonella strains produced biofilm and 69.3% of them were strong biofilm-producers. Our findings suggested that most likely, persistent Salmonella colonises various sites in the processing environment by producing biofilm, which leads to their widespread dissemination in wet markets located in northern Malaysia.
    Matched MeSH terms: Open Reading Frames
  13. Flot JF, Blanchot J, Charpy L, Cruaud C, Licuanan WY, Nakano Y, et al.
    BMC Ecol, 2011 Oct 04;11:22.
    PMID: 21970706 DOI: 10.1186/1472-6785-11-22
    BACKGROUND: Morphological data suggest that, unlike most other groups of marine organisms, scleractinian corals of the genus Stylophora are more diverse in the western Indian Ocean and in the Red Sea than in the central Indo-Pacific. However, the morphology of corals is often a poor predictor of their actual biodiversity: hence, we conducted a genetic survey of Stylophora corals collected in Madagascar, Okinawa, the Philippines and New Caledonia in an attempt to find out the true number of species in these various locations.

    RESULTS: A molecular phylogenetic analysis of the mitochondrial ORF and putative control region concurs with a haploweb analysis of nuclear ITS2 sequences in delimiting three species among our dataset: species A and B are found in Madagascar whereas species C occurs in Okinawa, the Philippines and New Caledonia. Comparison of ITS1 sequences from these three species with data available online suggests that species C is also found on the Great Barrier Reef, in Malaysia, in the South China Sea and in Taiwan, and that a distinct species D occurs in the Red Sea. Shallow-water morphs of species A correspond to the morphological description of Stylophora madagascarensis, species B presents the morphology of Stylophora mordax, whereas species C comprises various morphotypes including Stylophora pistillata and Stylophora mordax.

    CONCLUSIONS: Genetic analysis of the coral genus Stylophora reveals species boundaries that are not congruent with morphological traits. Of the four hypotheses that may explain such discrepancy (phenotypic plasticity, morphological stasis, morphological convergence, and interspecific hybridization), the first two appear likely to play a role but the fourth one is rejected since mitochondrial and nuclear markers yield congruent species delimitations. The position of the root in our molecular phylogenies suggests that the center of origin of Stylophora is located in the western Indian Ocean, which probably explains why this genus presents a higher biodiversity in the westernmost part of its area of distribution than in the "Coral Triangle".

    Matched MeSH terms: Open Reading Frames
  14. Yong HS, Song SL, Chua KO, Wayan Suana I, Eamsobhana P, Tan J, et al.
    Sci Rep, 2021 May 21;11(1):10680.
    PMID: 34021208 DOI: 10.1038/s41598-021-90162-1
    Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics.
    Matched MeSH terms: Open Reading Frames
  15. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Mol Biol Rep, 2012 Feb;39(2):1377-86.
    PMID: 21614523 DOI: 10.1007/s11033-011-0872-5
    The prophenoloxidase activating system is an important innate immune response against microbial infections in invertebrates. The major enzyme, phenoloxidase, is synthesized as an inactive precursor and its activation to an active enzyme is mediated by a cascade of clip domain serine proteinases. In this study, a cDNA encoding a prophenoloxidase activating enzyme-III from the giant freshwater prawn Macrobrachium rosenbergii, designated as MrProAE-III, was identified and characterized. The full-length cDNA contains an open reading frame of 1110 base pair (bp) encoding a predicted protein of 370 amino acids including an 22 amino acid signal peptide. The MrProAE-III protein exhibits a characteristic sequence structure of a long serine proteases-trypsin domain and an N- and C-terminal serine proteases-trypsin family histidine active sites, respectively, which together are the characteristics of the clip-serin proteases. Sequence analysis showed that MrProAE-III exhibited the highest amino acid sequence similarity (63%) to a ProAE-III from Atlantic blue crab, Callinectes sapidus. MrProAE-III mRNA and enzyme activity of MrProAE-III were detectable in all examined tissues, including hepatopancreas, hemocytes, pleopods, walking legs, eye stalk, gill, stomach, intestine, brain and muscle with the highest level of both in hepatopancreas. This is regulated after systemic infectious hypodermal and hematopoietic necrosis virus infection supporting that it is an immune-responsive gene. These results indicate that MrProAE-III functions in the proPO system and is an important component in the prawn immune system.
    Matched MeSH terms: Open Reading Frames/genetics
  16. Kong LL, Omar AR, Hair-Bejo M, Aini I, Seow HF
    Arch Virol, 2004 Feb;149(2):425-34.
    PMID: 14745606
    The deduced amino acid sequences of segment A and B of two very virulent Infectious bursal disease virus (vvIBDV) isolates, UPM94/273 and UPM97/61 were compared with 25 other IBDV strains. Twenty amino acid residues (8 in VP1, 5 in VP2, 2 in VP3, 4 in VP4, 1 in VP5) that were common to vvIBDV strains were detected. However, UPM94/273 is an exceptional vvIBDV with usual amino acid substitutions. The differences in the divergence of segment A and B indicated that the vvIBDV strains may have been derived from genetic reassortment of a single ancestral virus or both segments have different ability to undergo genetic variation due to their different functional constraints.
    Matched MeSH terms: Open Reading Frames/genetics
  17. Ibrahim K, Abdul Murad NA, Harun R, Jamal R
    Int J Mol Med, 2020 Aug;46(2):685-699.
    PMID: 32468002 DOI: 10.3892/ijmm.2020.4619
    Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that commonly exhibits resistance to treatment. The tumour is highly heterogenous and complex kinomic alterations have been reported leading to dysregulation of signalling pathways. The present study aimed to investigate the novel kinome pathways and to identify potential therapeutic targets in GBM. Meta‑analysis using Oncomine identified 113 upregulated kinases in GBM. RNAi screening was performed on identified kinases using ON‑TARGETplus siRNA library on LN18 and U87MG. Tousled‑like kinase 1 (TLK1), which is a serine/threonine kinase was identified as a potential hit. In vitro functional validation was performed as the role of TLK1 in GBM is unknown. TLK1 knockdown in GBM cells significantly decreased cell viability, clonogenicity, proliferation and induced apoptosis. TLK1 knockdown also chemosensitised the GBM cells to the sublethal dose of temozolomide. The downstream pathways of TLK1 were examined using microarray analysis, which identified the involvement of DNA replication, cell cycle and focal adhesion signalling pathways. In vivo validation of the subcutaneous xenografts of stably transfected sh‑TLK1 U87MG cells demonstrated significantly decreased tumour growth in female BALB/c nude mice. Together, these results suggested that TLK1 may serve a role in GBM survival and may serve as a potential target for glioma.
    Matched MeSH terms: Open Reading Frames/genetics
  18. Hossain MG, Mahmud MM, Nazir KHMNH, Ueda K
    Int J Mol Sci, 2020 Jan 15;21(2).
    PMID: 31952213 DOI: 10.3390/ijms21020546
    Mutations in the hepatitis B virus (HBV) genome can potentially lead to vaccination failure, diagnostic escape, and disease progression. However, there are no reports on viral gene expression and large hepatitis B surface antigen (HBsAg) antigenicity alterations due to mutations in HBV isolated from a Bangladeshi population. Here, we sequenced the full genome of the HBV isolated from a clinically infected patient in Bangladesh. The open reading frames (ORFs) (P, S, C, and X) of the isolated HBV strain were successfully amplified and cloned into a mammalian expression vector. The HBV isolate was identified as genotype C (sub-genotype C2), serotype adr, and evolutionarily related to strains isolated in Indonesia, Malaysia, and China. Clinically significant mutations, such as preS1 C2964A, reverse transcriptase domain I91L, and small HBsAg N3S, were identified. The viral P, S, C, and X genes were expressed in HEK-293T and HepG2 cells by transient transfection with a native subcellular distribution pattern analyzed by immunofluorescence assay. Western blotting of large HBsAg using preS1 antibody showed no staining, and preS1 ELISA showed a significant reduction in reactivity due to amino acid mutations. This mutated preS1 sequence has been identified in several Asian countries. To our knowledge, this is the first report investigating changes in large HBsAg antigenicity due to preS1 mutations.
    Matched MeSH terms: Open Reading Frames/genetics
  19. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al.
    Gigascience, 2019 03 01;8(3).
    PMID: 30535374 DOI: 10.1093/gigascience/giy152
    BACKGROUND: The expanding world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries currently face a serious burden of malnutrition, especially in Africa and south and southeast Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize, and rice provide the majority of calories. Therefore, to diversify and stabilize the global food supply, enhance agricultural productivity, and tackle malnutrition, greater use of neglected or underutilized local plants (so-called orphan crops, but also including a few plants of special significance to agriculture, agroforestry, and nutrition) could be a partial solution.

    RESULTS: Here, we present draft genome information for five agriculturally, biologically, medicinally, and economically important underutilized plants native to Africa: Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera. Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera, we have predicted 31,707, 20,946, 28,979, 18,937, and 18,451 protein-coding genes, respectively. By further analyzing the expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription factors, and starch biosynthesis-related genes in these genomes.

    CONCLUSIONS: These genome data will be useful to identify and characterize agronomically important genes and understand their modes of action, enabling genomics-based, evolutionary studies, and breeding strategies to design faster, more focused, and predictable crop improvement programs.

    Matched MeSH terms: Open Reading Frames/genetics
  20. Lal TM, Sano M, Ransangan J
    J Basic Microbiol, 2016 Aug;56(8):872-88.
    PMID: 26960780 DOI: 10.1002/jobm.201500611
    Vibrio parahaemolyticus has long been known pathogenic to shrimp but only recently it is also reported pathogenic to tropical cultured marine finfish. Traditionally, bacterial diseases in aquaculture are often treated using synthetic antibiotics but concern due to side effects of these chemicals is elevating hence, new control strategies which are both environmental and consumer friendly, are urgently needed. One promising control strategy is the bacteriophage therapy. In this study, we report the isolation and characterization of a novel vibriophage (VpKK5), belonging to the family Siphoviridae that was specific and capable of complete lysing the fish pathogenic strain of V. parahaemolyticus. The VpKK5 exhibited short eclipse and latent periods of 24 and 36 min, respectively, but with a large burst size of 180 pfu/cell. The genome analysis revealed that the VpKK5 is a novel bacteriophage with the estimated genome size of 56,637 bp and has 53.1% G + C content. The vibriophage has about 80 predicted open reading frames consisted of 37 complete coding sequences which did not match to any protein databases. The analysis also found no lysogeny and virulence genes in the genome of VpKK5. With such genome features, we suspected the vibriophage is novel and could be explored for phage therapy against fish pathogenic strains of V. parahaemolyticus in the near future.
    Matched MeSH terms: Open Reading Frames/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links