Displaying publications 41 - 60 of 423 in total

Abstract:
Sort:
  1. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TS, Bachi NA, Abu Tahrim N, Abd Hamid HH, et al.
    PeerJ, 2023;11:e14719.
    PMID: 36748091 DOI: 10.7717/peerj.14719
    The environmental fate of non-steroidal anti-inflammatory drugs (NSAIDs) in the urban water cycle is still uncertain and their status is mainly assessed based on specific water components and information on human risk assessments. This study (a) explores the environmental fate of NSAIDs (ibuprofen, IBU; naproxen, NAP; ketoprofen, KET; diazepam, DIA; and diclofenac, DIC) in the urban water cycle, including wastewater, river, and treated water via gas chromatography-mass spectrophotometry (GCMS), (b) assesses the efficiency of reducing the targeted NSAIDs in sewage treatment plant (STP) using analysis of variance (ANOVA), and (c) evaluates the ecological risk assessment of these drugs in the urban water cycle via teratogenic index (TI) and risk quotient (RQ). The primary receptor of contaminants comes from urban areas, as a high concentration of NSAIDs is detected (ranging from 5.87 × 103 to 7.18 × 104 ng/L). The percentage of NSAIDs removal in STP ranged from 25.6% to 92.3%. The NAP and KET were still detected at trace levels in treated water, indicating the persistent presence in the water cycle. The TI values for NAP and DIA (influent and effluent) were more than 1, showing a risk of a teratogenic effect. The IBU, KET, and DIC had values of less than 1, indicating the risk of lethal embryo effects. The NAP and DIA can be classified as Human Pregnancy Category C (2.1 > TI ≥ 0.76). This work proved that these drugs exist in the current urban water cycle, which could induce adverse effects on humans and the environment (RQ in high and low-risk categories). Therefore, they should be minimized, if not eliminated, from the primary sources of the pollutant (i.e., STPs). These pollutants should be considered a priority to be monitored, given focus to, and listed in the guideline due to their persistent presence in the urban water cycle.
    Matched MeSH terms: Pharmaceutical Preparations
  2. Kumar P, Chaudhary B, Jain V, Baboota S, Shivanandy P, Alharbi KS, et al.
    Curr Drug Deliv, 2023;20(9):1262-1274.
    PMID: 36380413 DOI: 10.2174/1567201820666221114113637
    Molecular pharmaceutics play a critical role in the drug delivery system, representing the direct interconnection of drug bioavailability with its molecular form. There is a diversity in the molecular structures by which it affects its properties, such as amorphous form, crystalline form, partialamorphous molecular dispersion, and disordered state. The active pharmaceutical ingredient (API) and the excipients utilized in the formulation process contain various divergent modes used in the formulation process. They include better formulations of any type to obtain good quality pharmaceutical products. This review reveals how the molecular states affect the API and are important in maintaining the quality of dosage forms. Furthermore, the physio-chemical properties of the components and various pharmaceutical approaches employed in the formulation of dosage forms are studied from the point of view of molecular pharmaceutics.
    Matched MeSH terms: Pharmaceutical Preparations
  3. Chang CE, Khan RA, Tay CY, Thangaiyah B, Ong VST, Pakeer Oothuman S, et al.
    PLoS One, 2023;18(3):e0282342.
    PMID: 36867615 DOI: 10.1371/journal.pone.0282342
    BACKGROUND: Clinical pharmacy plays an integral role in optimizing inpatient care. Nevertheless, prioritising patient care remains a critical challenge for pharmacists in a hectic medical ward. In Malaysia, clinical pharmacy practice has a paucity of standardized tools to prioritise patient care.

    AIM: Our aim is to develop and validate a pharmaceutical assessment screening tool (PAST) to guide medical ward pharmacists in our local hospitals to effectively prioritise patient care.

    METHOD: This study involved 2 major phases; (1) development of PAST through literature review and group discussion, (2) validation of PAST using a three-round Delphi survey. Twenty-four experts were invited by email to participate in the Delphi survey. In each round, experts were required to rate the relevance and completeness of PAST criteria and were given chance for open feedback. The 75% consensus benchmark was set and criteria with achieved consensus were retained in PAST. Experts' suggestions were considered and added into PAST for rating. After each round, experts were provided with anonymised feedback and results from the previous round.

    RESULTS: Three Delphi rounds resulted in the final tool (rearranged as mnemonic 'STORIMAP'). STORIMAP consists of 8 main criteria with 29 subcomponents. Marks are allocated for each criteria in STORIMAP which can be combined to a total of 15 marks. Patient acuity level is determined based on the final score and clerking priority is assigned accordingly.

    CONCLUSION: STORIMAP potentially serves as a useful tool to guide medical ward pharmacists to prioritise patients effectively, hence establishing acuity-based pharmaceutical care.

    Matched MeSH terms: Pharmaceutical Preparations
  4. Loh EYX, Ab Ghani A, Ahmad R
    Adv Exp Med Biol, 2023;1430:181-195.
    PMID: 37526848 DOI: 10.1007/978-3-031-34567-8_10
    The National Pharmaceutical Regulatory Agency (NPRA) is the agency responsible for the registration of pharmaceutical, natural, and health supplement products and notification of cosmetic products that are marketed in Malaysia. The implementation of regulatory oversight of the different types of product was in a progressive manner, with the latest addition to be regulated being the cell and gene therapy products (CGTPs), beginning January 1, 2021. CGTP can be classified as low risk (that does not require registration) or high risk (that needs to be registered). Generally, the regulation of high-risk CGTP is similar to other biological products. This chapter describes the chronology of the CGTP framework, classification of CGTP, how CGTPs fit into the current registration pathways and registration procedure, dossier requirements, and what is the current status and future direction of CGTP in Malaysia.
    Matched MeSH terms: Pharmaceutical Preparations
  5. Pandey M, Ting JSS, Gorain B, Jain N, Mayuren J
    Curr Pharm Des, 2023;29(40):3254-3262.
    PMID: 37438899 DOI: 10.2174/1381612829666230712162540
    The prevalence of vaginal infection is increasing among women, especially at reproductive age. For proper eradication of infection, the effective concentration of a drug is required at the infection site. Therefore, local delivery is recommended to exert a direct therapeutic effect at the site action that causes a reduction in dose and side effects. The main focus of vaginal drug delivery is to enhance retention time and patient compliance. The high recurrence rate of vaginal infection due to the lack of effective treatment strategies opens the door for new therapeutic approaches. To combat these setbacks, intravaginal gene therapies have been investigated. High attention has been gained by vaginal gene therapy, especially for sexually transmitted infection treatment. Despite much research, no product is available in the market, although in vitro and preclinical data support the vaginal route as an effective route for gene administration. The main focus of this review is to discuss the recent advancement in miniaturized polymeric systems for intravaginal gene therapies to treat local infections. An overview of different barriers to vaginal delivery and challenges of vaginal infection treatment are also summarised.
    Matched MeSH terms: Pharmaceutical Preparations
  6. Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, et al.
    Chem Biol Interact, 2022 Dec 01;368:110238.
    PMID: 36306865 DOI: 10.1016/j.cbi.2022.110238
    Polysaccharides (PS) represent a broad class of polymer-based compounds that have been extensively researched as therapeutics and excipients for drug delivery. As pharmaceutical carriers, PS have mostly found their use as adsorbents, suspending agents, as well as cross-linking agents for various formulations such as liposomes, nanoparticles, nanoemulsions, nano lipid carriers, microspheres etc. This is due to inherent properties of PS such as porosity, steric stability and swellability, insolubility in pH. There have been emerging reports on the use of PS as therapeutic agent due to its anti-inflammatory and anti-oxidative properties for various diseases. In particular, for Crohn's disease, ulcerative colitis and inflammatory bowel disease. However, determining the dosage, treatment duration and effective technology transfer of these therapeutic moieties have not occurred. This is due to the fact that PS are still at a nascent stage of development to a full proof therapy for a particular disease. Recently, a combination of polysaccharide which act as a prebiotic and a probiotic have been used as a combination to treat various intestinal and colorectal (CRC) related diseases. This has proven to be beneficial, has shown good in vivo correlation and is well reported. The present review entails a detailed description on the role of PS used as a therapeutic agent and as a formulation pertaining to gastrointestinal diseases.
    Matched MeSH terms: Pharmaceutical Preparations
  7. Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, et al.
    Arch Pharm Res, 2022 Dec;45(12):865-893.
    PMID: 36422795 DOI: 10.1007/s12272-022-01418-x
    Messenger RNA (mRNA) recently emerged as an appealing alternative to treat and prevent diseases ranging from cancer and Alzheimer's disease to COVID-19 with significant clinical outputs. The in vitro-transcribed mRNA has been engineered to mimic the structure of natural mRNA for vaccination, cancer immunotherapy and protein replacement therapy. In past decades, significant progress has been noticed in unveiling the molecular pathways of mRNA, controlling its translatability and stability, and its evolutionary defense mechanism. However, numerous unsolved structural, biological, and technical difficulties hamper the successful implementation of systemic delivery of mRNA for safer human consumption. Advances in designing and manufacturing mRNA and selecting innovative delivery vehicles are mandatory to address the unresolved issues and achieve the full potential of mRNA drugs. Despite the substantial efforts made to improve the intracellular delivery of mRNA drugs, challenges associated with diverse applications in different routes still exist. This study examines the current progress of mRNA therapeutics and advancements in designing biomaterials and delivery strategies, the existing translational challenges of clinical tractability and the prospects of overcoming any challenges related to mRNA.
    Matched MeSH terms: Pharmaceutical Preparations
  8. Henry Basil J, Premakumar CM, Mhd Ali A, Mohd Tahir NA, Mohamed Shah N
    Drug Saf, 2022 Dec;45(12):1457-1476.
    PMID: 36192535 DOI: 10.1007/s40264-022-01236-6
    INTRODUCTION: Neonates are at greater risk of preventable adverse drug events as compared to children and adults.

    OBJECTIVE: This study aimed to estimate and critically appraise the evidence on the prevalence, causes and severity of medication administration errors (MAEs) amongst neonates in Neonatal Intensive Care Units (NICUs).

    METHODS: A systematic review and meta-analysis was conducted by searching nine electronic databases and the grey literature for studies, without language and publication date restrictions. The pooled prevalence of MAEs was estimated using a random-effects model. Data on error causation were synthesised using Reason's model of accident causation.

    RESULTS: Twenty unique studies were included. Amongst direct observation studies reporting total opportunity for errors as the denominator for MAEs, the pooled prevalence was 59.3% (95% confidence interval [CI] 35.4-81.3, I2 = 99.5%). Whereas, the non-direct observation studies reporting medication error reports as the denominator yielded a pooled prevalence of 64.8% (95% CI 46.6-81.1, I2 = 98.2%). The common reported causes were error-provoking environments (five studies), while active failures were reported by three studies. Only three studies examined the severity of MAEs, and each utilised a different method of assessment.

    CONCLUSIONS: This is the first comprehensive systematic review and meta-analysis estimating the prevalence, causes and severity of MAEs amongst neonates. There is a need to improve the quality and reporting of studies to produce a better estimate of the prevalence of MAEs amongst neonates. Important targets such as wrong administration-technique, wrong drug-preparation and wrong time errors have been identified to guide the implementation of remedial measures.

    Matched MeSH terms: Pharmaceutical Preparations
  9. Murayama A, Yamada K, Yoshida M, Kaneda Y, Saito H, Sawano T, et al.
    Clin J Am Soc Nephrol, 2022 Jun;17(6):819-826.
    PMID: 35623883 DOI: 10.2215/CJN.14661121
    BACKGROUND AND OBJECTIVES: Rigorous and transparent management strategies for conflicts of interest and clinical practice guidelines with the best available evidence are necessary for the development of nephrology guidelines. However, there was no study assessing financial and nonfinancial conflicts of interest, quality of evidence underlying the Japanese guidelines for CKD, and conflict of interest policies for guideline development.

    DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This cross-sectional study examined financial and nonfinancial conflicts of interest among all 142 authors of CKD guidelines issued by the Japanese Society of Nephrology using a personal payment database from all 92 major Japanese pharmaceutical companies between 2016 and 2019 and self-citations by guideline authors. Also, the quality of evidence and strength of recommendations underlying the guidelines and conflicts of interest policies of Japanese, US, and European nephrology societies were evaluated.

    RESULTS: Among 142 authors, 125 authors (88%) received $6,742,889 in personal payments from 56 pharmaceutical companies between 2016 and 2019. Four-year combined median payment per author was $8258 (interquartile range, $2230‒$51,617). The amounts of payments and proportion of guideline authors with payments remained stable during and after guideline development. The chairperson, vice chairperson, and group leaders received higher personal payments than other guideline authors. Of 861 references in the guidelines, 69 (8%) references were self-cited by the guideline authors, and 76% of the recommendations were on the basis of low or very low quality of evidence. There were no fully rigorous and transparent conflicts of interest policies for nephrology guideline authors in the United States, Europe, and Japan.

    CONCLUSIONS: Most of the Japanese CKD guideline recommendations were on the basis of low quality of evidence by the guideline authors tied with pharmaceutical companies, suggesting the need for better financial conflicts of interest management.

    Matched MeSH terms: Pharmaceutical Preparations
  10. ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, et al.
    Bioengineered, 2022 Jun;13(6):14681-14718.
    PMID: 35946342 DOI: 10.1080/21655979.2022.2100863
    Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
    Matched MeSH terms: Pharmaceutical Preparations/metabolism
  11. Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, et al.
    Bioengineered, 2022 Apr;13(4):10518-10539.
    PMID: 35443858 DOI: 10.1080/21655979.2022.2062526
    Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
    Matched MeSH terms: Pharmaceutical Preparations
  12. Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC
    Chemosphere, 2022 Mar;291(Pt 2):132932.
    PMID: 34798100 DOI: 10.1016/j.chemosphere.2021.132932
    Microalgae is an autotrophic organism with fast growth, short reproduction cycle, and strong environmental adaptability. In recent years, microalgae and the bioactive ingredients extracted from microalgae are regarded as potential substitutes for raw materials in the pharmaceutical and the cosmetics industry. In this review, the characteristics and efficacy of the high-value components of microalgae are discussed in detail, along with the sources and extraction technologies of algae used to obtain high-value ingredients are reviewed. Moreover, the latest trends in biotherapy based on high-value algae extracts as materials are discussed. The excellent antioxidant properties of microalgae derivatives are regarded as an attractive replacement for safe and environmentally friendly cosmetics formulation and production. Through further studies, the mechanism of microalgae bioactive compounds can be understood better and reasonable clinical trials conducted can safely conclude the compliance of microalgae-derived drugs or cosmetics to be necessary standards to be marketed.
    Matched MeSH terms: Pharmaceutical Preparations*
  13. Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, Galbán-Malagón C, et al.
    Proc Natl Acad Sci U S A, 2022 Feb 22;119(8).
    PMID: 35165193 DOI: 10.1073/pnas.2113947119
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
    Matched MeSH terms: Pharmaceutical Preparations
  14. Wee SY, Ismail NAH, Haron DEM, Yusoff FM, Praveena SM, Aris AZ
    J Hazard Mater, 2022 02 15;424(Pt A):127327.
    PMID: 34600377 DOI: 10.1016/j.jhazmat.2021.127327
    Humans are exposed to endocrine disrupting compounds (EDCs) in tap water via drinking water. Currently, most of the analytical methods used to assess a long list of EDCs in drinking water have been made available only for a single group of EDCs and their metabolites, in contrast with other environmental matrices (e.g., surface water, sediments, and biota) for which more robust methods have been developed that allow detection of multiple groups. This study reveals an analytical method of one-step solid phase extraction, incorporated together with liquid chromatography-tandem mass spectrometry for the quantification of multiclass EDCs (i.e., pharmaceuticals, hormones, plasticizers, and pesticides) in drinking water. Fifteen multiclass EDCs significantly varied in amount between field samples (p 
    Matched MeSH terms: Pharmaceutical Preparations*
  15. Nabgan W, Jalil AA, Nabgan B, Ikram M, Ali MW, Ankit Kumar, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132535.
    PMID: 34648794 DOI: 10.1016/j.chemosphere.2021.132535
    The growing prevalence of new toxins in the environment continues to cause widespread concerns. Pharmaceuticals, organic pollutants, heavy metal ions, endocrine-disrupting substances, microorganisms, and others are examples of persistent organic chemicals whose effects are unknown because they have recently entered the environment and are displaying up in wastewater treatment facilities. Pharmaceutical pollutants in discharged wastewater have become a danger to animals, marine species, humans, and the environment. Although their presence in drinking water has generated significant concerns, little is known about their destiny and environmental effects. As a result, there is a rising need for selective, sensitive, quick, easy-to-handle, and low-cost early monitoring detection systems. This study aims to deliver an overview of a low-cost carbon-based composite to detect and remove pharmaceutical components from wastewater using the literature reviews and bibliometric analysis technique from 1970 to 2021 based on the web of science (WoS) database. Various pollutants in water and soil were reviewed, and different methods were introduced to detect pharmaceutical pollutants. The advantages and drawbacks of varying carbon-based materials for sensing and removing pharmaceutical wastes were also introduced. Finally, the available techniques for wastewater treatment, challenges and future perspectives on the recent progress were highlighted. The suggestions in this article will facilitate the development of novel on-site methods for removing emerging pollutants from pharmaceutical effluents and commercial enterprises.
    Matched MeSH terms: Pharmaceutical Preparations*
  16. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TSB, Bachi' NA, Abdullah NA, Abd Hamid HH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132134.
    PMID: 34517236 DOI: 10.1016/j.chemosphere.2021.132134
    The water stream has been reported to contain non-steroidal anti-inflammatory drugs (NSAIDs), released from households and premises through discharge from Sewage Treatment Plant (STP). This research identifies commonly consumed NSAIDs namely ibuprofen (IBU), diclofenac (DIC), ketoprofen (KET) and naproxen (NAP) in the influent wastewater from two urban catchments (i.e. 2 STPs). We expand our focus to assess the efficiency of monomer (C18) and dimer (HLB) types of sorbents in the solid phase extraction method followed by gas chromatography mass spectrometry (GCMS) analysis and optimize model prediction of NSAIDs in the influent wastewater using I-Optimal design. The ecological risk assessment of the NSAIDs was evaluated. The HLB produced reliable analysis for all NSAIDs under study (STP1: 6.7 × 10-3 mg L-1 to 2.21 × 10-1 mg L-1, STP2: 1.40 × 10-4 mg L-1 to 9.72 × 10-2 mg L-1). The C18 however, selective to NAP. Based on the Pearson proximity matrices, the DICHLB can be a good indicator for IBUHLB (0.565), NAPC18 (0.721), NAPHLB (0.566), and KETHLB (0.747). The optimized model prediction for KET and NAP based on DIC are successfully validated. The risk quotients (RQ) values of NSAIDs were classified as high (RQ > 1), medium (RQ, 0.1-1) and low (RQ, 0.01-0.1) risks. The optimized models are beneficial for major NSAIDs (KET and NAP) monitoring in the influent wastewater of urban domestic area. An upgrade on the existing wastewater treatment infrastructure is recommended to counteract current water security situation.
    Matched MeSH terms: Pharmaceutical Preparations*
  17. Matsuzaki Tada A, Hamezah HS, Pahrudin Arrozi A, Abu Bakar ZH, Yanagisawa D, Tooyama I
    J Alzheimers Dis, 2022;89(3):835-848.
    PMID: 35964178 DOI: 10.3233/JAD-220192
    BACKGROUND: Tripeptide Met-Lys-Pro (MKP), a component of casein hydrolysates, has effective angiotensin-converting enzyme (ACE) inhibitory activity. Brain angiotensin II enzyme activates the NADPH oxidase complex via angiotensin II receptor type 1 (AT1) and enhances oxidative stress injury. ACE inhibitors improved cognitive function in Alzheimer's disease (AD) mouse models and previous clinical trials. Thus, although undetermined, MKP may be effective against pathological amyloid-β (Aβ) accumulation-induced cognitive impairment.

    OBJECTIVE: The current study aimed to investigate the potential of MKP as a pharmaceutical against AD by examining MKP's effect on cognitive function and molecular changes in the brain using double transgenic (APP/PS1) mice.

    METHODS: Experimental procedures were conducted in APP/PS1 mice (n = 38) with a C57BL/6 background. A novel object recognition test was used to evaluate recognition memory. ELISA was used to measure insoluble Aβ40, Aβ42, and TNF-α levels in brain tissue. Immunohistochemical analysis allowed the assessment of glial cell activation in MKP-treated APP/PS1 mice.

    RESULTS: The novel object recognition test revealed that MKP-treated APP/PS1 mice showed significant improvement in recognition memory. ELISA of brain tissue showed that MKP significantly reduced insoluble Aβ40, Aβ42, and TNF-α levels. Immunohistochemical analysis indicated the suppression of the marker for microglia and reactive astrocytes in MKP-treated APP/PS1 mice.

    CONCLUSION: Based on these results, we consider that MKP could ameliorate pathological Aβ accumulation-induced cognitive impairment in APP/PS1 mice. Furthermore, our findings suggest that MKP potentially contributes to preventing cognitive decline in AD.

    Matched MeSH terms: Pharmaceutical Preparations
  18. Murayama A, Hoshi M, Saito H, Kamamoto S, Tanaka M, Kawashima M, et al.
    Respiration, 2022;101(12):1088-1098.
    PMID: 36353778 DOI: 10.1159/000526576
    BACKGROUND: Financial relationships between healthcare professionals and pharmaceutical companies have historically caused conflicts of interest and unduly influenced patient care. However, little was known about such relationship and its effect in clinical practice among specialists in respiratory medicine.

    METHODS: Based on the retrospective analysis of payment data made available by all 92 pharmaceutical companies in Japan, this study evaluated the magnitude and trend of financial relationships between all board-certified Japanese respiratory specialists and pharmaceutical companies between 2016 and 2019. Magnitude and prevalence of payments for specialists were analyzed descriptively. The payment trends were assessed using the generalized estimating equations for the payment per specialist and the number of specialists with payments.

    RESULTS: Among all 7,114 respiratory specialists certified as of August 2021, 4,413 (62.0%) received a total of USD 53,547,391 and 74,195 counts from 72 (78.3%) pharmaceutical companies between 2016 and 2019. The median (interquartile range) 4-year combined payment values per specialist were USD 2,210 (USD 715-8,178). At maximum, one specialist received USD 495,332 personal payments over the 4 years. Both payments per specialist and number of specialists with payments significantly increased during the 4-year period, with 7.8% (95% CI: 5.5-9.8; p < 0.001) in payments and 1.5% (95% CI: 0.61-2.4; p = 0.001) in number of specialists with payments, respectively.

    CONCLUSION: The majority of respiratory specialists had increasingly received more personal payments from pharmaceutical companies for the reimbursement of lecturing, consulting, and writing between 2016 and 2019. These increasing financial relationships with pharmaceutical companies might cause conflicts of interest among respiratory physicians.

    Matched MeSH terms: Pharmaceutical Preparations
  19. Sivanandy P, Leey TC, Xiang TC, Ling TC, Wey Han SA, Semilan SLA, et al.
    PMID: 35010624 DOI: 10.3390/ijerph19010364
    Parkinson's Disease (PD) is a disease that involves neurodegeneration and is characterised by the motor symptoms which include muscle rigidity, tremor, and bradykinesia. Other non-motor symptoms include pain, depression, anxiety, and psychosis. This disease affects up to ten million people worldwide. The pathophysiology behind PD is due to the neurodegeneration of the nigrostriatal pathway. There are many conventional drugs used in the treatment of PD. However, there are limitations associated with conventional drugs. For instance, levodopa is associated with the on-off phenomenon, and it may induce wearing off as time progresses. Therefore, this review aimed to analyze the newly approved drugs by the United States-Food and Drug Administration (US-FDA) from 2016-2019 as the adjuvant therapy for the treatment of PD symptoms in terms of efficacy and safety. The new drugs include safinamide, istradefylline and pimavanserin. From this review, safinamide is considered to be more efficacious and safer as the adjunct therapy to levodopa as compared to istradefylline in controlling the motor symptoms. In Study 016, both safinamide 50 mg (p = 0.0138) and 100 mg (p = 0.0006) have improved the Unified Parkinson's Disease Rating Scale (UPDRS) part III score as compared to placebo. Improvement in Clinical Global Impression-Change (CGI-C), Clinical Global Impression-Severity of Illness (CGI-S) and off time were also seen in both groups of patients following the morning levodopa dose. Pimavanserin also showed favorable effects in ameliorating the symptoms of Parkinson's Disease Psychosis (PDP). A combination of conventional therapy and non-pharmacological treatment is warranted to enhance the well-being of PD patients.
    Matched MeSH terms: Pharmaceutical Preparations*
  20. Dai C, Li S, Duan Y, Leong KH, Tu Y, Zhou L
    Sci Total Environ, 2021 Dec 20;801:149730.
    PMID: 34467938 DOI: 10.1016/j.scitotenv.2021.149730
    Pharmaceuticals in aquatic environment have raised wide attention in recent years due to their potential adverse effects and bioaccumulation in biota. China has been a major producer and consumer of pharmaceuticals, however, the potential human health risk of these chemicals is yet to be determined in China. In this study, we evaluated available exposure data for twenty pharmaceuticals in surface waters from Chinese five major river basins (the Yangtze, Haihe, Pearl, Songliao, and Yellow River Basins), and human health risk assessment was performed. Based on the concentration data and risk data, we conducted research on the source, cause, and control measures of the pharmaceuticals. The twenty pharmaceuticals were found to be ubiquitous in China with median concentrations between 0.09 and 304 ng/L. The estimated daily intake of pharmaceuticals from drinking water and eating fish was calculated. The intake via drinking water was significantly lower than that via eating fish. The risk quotients via water intake and fish consumption ranged from 0 to 17.2, with estrogen and sulfapyridine highest among the twenty pharmaceuticals. High risks of exposure were mainly in North China, including the Haihe and Songliao River Basins. This is the first analysis in Chinese major river basins that has filled the gaps in the research on the human health risks of pharmaceuticals. The results of the study provide basic information of pharmaceutical intake from drinking water and eating fish in China and provide insights into the risk management guidance of pharmaceuticals, and will facilitate the optimization of health advisories and policy making.
    Matched MeSH terms: Pharmaceutical Preparations*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links