Displaying publications 41 - 60 of 587 in total

Abstract:
Sort:
  1. Kalman JL, Yoshida T, Andlauer TFM, Schulte EC, Adorjan K, Alda M, et al.
    Eur Arch Psychiatry Clin Neurosci, 2022 Dec;272(8):1611-1620.
    PMID: 35146571 DOI: 10.1007/s00406-021-01366-5
    Personality traits influence risk for suicidal behavior. We examined phenotype- and genotype-level associations between the Big Five personality traits and suicidal ideation and attempt in major depressive, bipolar and schizoaffective disorder, and schizophrenia patients (N = 3012) using fixed- and random-effects inverse variance-weighted meta-analyses. Suicidal ideations were more likely to be reported by patients with higher neuroticism and lower extraversion phenotypic scores, but showed no significant association with polygenic load for these personality traits. Our findings provide new insights into the association between personality and suicidal behavior across mental illnesses and suggest that the genetic component of personality traits is unlikely to have strong causal effects on suicidal behavior.
    Matched MeSH terms: Phenotype
  2. Yeasmin L, Ali MN, Gantait S, Chakraborty S
    3 Biotech, 2015 Feb;5(1):1-11.
    PMID: 28324361 DOI: 10.1007/s13205-014-0201-5
    Genetic diversity represents the heritable variation both within and among populations of organisms, and in the context of this paper, among bamboo species. Bamboo is an economically important member of the grass family Poaceae, under the subfamily Bambusoideae. India has the second largest bamboo reserve in Asia after China. It is commonly known as "poor man's timber", keeping in mind the variety of its end use from cradle to coffin. There is a wide genetic diversity of bamboo around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, the identification, characterization and documentation of genetic diversity of bamboo are essential for this purpose. During recent years, multiple endeavors have been undertaken for characterization of bamboo species with the aid of molecular markers for sustainable utilization of genetic diversity, its conservation and future studies. Genetic diversity assessments among the identified bamboo species, carried out based on the DNA fingerprinting profiles, either independently or in combination with morphological traits by several researchers, are documented in the present review. This review will pave the way to prepare the database of prevalent bamboo species based on their molecular characterization.
    Matched MeSH terms: Phenotype
  3. Mutusamy P, Banga Singh KK, Su Yin L, Petersen B, Sicheritz-Ponten T, Clokie MRJ, et al.
    Int J Mol Sci, 2023 Feb 12;24(4).
    PMID: 36835084 DOI: 10.3390/ijms24043678
    Salmonella infections across the globe are becoming more challenging to control due to the emergence of multidrug-resistant (MDR) strains. Lytic phages may be suitable alternatives for treating these multidrug-resistant Salmonella infections. Most Salmonella phages to date were collected from human-impacted environments. To further explore the Salmonella phage space, and to potentially identify phages with novel characteristics, we characterized Salmonella-specific phages isolated from the Penang National Park, a conserved rainforest. Four phages with a broad lytic spectrum (kills >5 Salmonella serovars) were further characterized; they have isometric heads and cone-shaped tails, and genomes of ~39,900 bp, encoding 49 CDSs. As the genomes share a <95% sequence similarity to known genomes, the phages were classified as a new species within the genus Kayfunavirus. Interestingly, the phages displayed obvious differences in their lytic spectrum and pH stability, despite having a high sequence similarity (~99% ANI). Subsequent analysis revealed that the phages differed in the nucleotide sequence in the tail spike proteins, tail tubular proteins, and portal proteins, suggesting that the SNPs were responsible for their differing phenotypes. Our findings highlight the diversity of novel Salmonella bacteriophages from rainforest regions, which can be explored as an antimicrobial agent against MDR-Salmonella strains.
    Matched MeSH terms: Phenotype
  4. Lee WS, Arai K, Alex G, Treepongkaruna S, Kim KM, Choong CL, et al.
    J Gastroenterol Hepatol, 2023 Apr;38(4):510-522.
    PMID: 36508314 DOI: 10.1111/jgh.16084
    Disease phenotype of pediatric inflammatory bowel disease (PIBD) in children from the Asia-Pacific region differs from that of children from the West. Many parts of Asia are endemic for tuberculosis, making diagnosis and management of pediatric Crohn's disease a challenge. Current available guidelines, mainly from Europe and North America, may not be completely applicable to clinicians caring for children with PIBD in Asia due to differences in disease characteristics and regional resource constraints. This position paper is an initiative from the Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology and Nutrition (APPSPGHAN) that aims to provide an up-to-date, evidence-based approach to PIBD in the Asia-Pacific region. A group of pediatric gastroenterologists with a special interest in PIBD performed an extensive literature search covering epidemiology, disease characteristics and natural history, management, and monitoring. Attention was paid to publications from the region with special consideration to a resource-limited setting. This current position paper deals with surgical management, disease monitoring, immunization, bone health, and nutritional issues of PIBD in Asia. A special section on differentiating pediatric Crohn's disease from tuberculosis in children is included. This position paper provides a useful guide to clinicians in the surgical management, disease monitoring, and various health issues in children with IBD in Asia-Pacific region.
    Matched MeSH terms: Phenotype
  5. Agarwal R, Iezhitsa I
    Mol Aspects Med, 2023 Dec;94:101228.
    PMID: 38016252 DOI: 10.1016/j.mam.2023.101228
    Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
    Matched MeSH terms: Phenotype
  6. Lu SJ, Salleh AH, Mohamad MS, Deris S, Omatu S, Yoshioka M
    Comput Biol Chem, 2014 12;53PB:175-183.
    PMID: 25462325 DOI: 10.1016/j.compbiolchem.2014.09.008
    Reconstructions of genome-scale metabolic networks from different organisms have become popular in recent years. Metabolic engineering can simulate the reconstruction process to obtain desirable phenotypes. In previous studies, optimization algorithms have been implemented to identify the near-optimal sets of knockout genes for improving metabolite production. However, previous works contained premature convergence and the stop criteria were not clear for each case. Therefore, this study proposes an algorithm that is a hybrid of the ant colony optimization algorithm and flux balance analysis (ACOFBA) to predict near optimal sets of gene knockouts in an effort to maximize growth rates and the production of certain metabolites. Here, we present a case study that uses Baker's yeast, also known as Saccharomyces cerevisiae, as the model organism and target the rate of vanillin production for optimization. The results of this study are the growth rate of the model organism after gene deletion and a list of knockout genes. The ACOFBA algorithm was found to improve the yield of vanillin in terms of growth rate and production compared with the previous algorithms.
    Matched MeSH terms: Phenotype
  7. Phing Lau WC, Latif MA, Y Rafii M, Ismail MR, Puteh A
    Crit Rev Biotechnol, 2016;36(1):87-98.
    PMID: 24937109 DOI: 10.3109/07388551.2014.923987
    The eating and cooking qualities of rice are heavily emphasized in breeding programs because they determine market values and they are the appealing attributes sought by consumers. Conventional breeding has developed traditional varieties with improved eating and cooking qualities. Recently, intensive genetic studies have pinpointed the genes that control eating and cooking quality traits. Advances in genetic studies have developed molecular techniques, thereby allowing marker-assisted breeding (MAB) for improved eating and cooking qualities in rice. MAB has gained the attention of rice breeders for the advantages it can offer that conventional breeding cannot. There have been successful cases of using MAB to improve the eating and cooking qualities in rice over the years. Nevertheless, MAB should be applied cautiously given the intensive effort needed for genotyping. Perspectives from conventional breeding to marker-assisted breeding will be discussed in this review for the advancement of the eating and cooking qualities of fragrance, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT) in rice. These four parameters are associated with eating and cooking qualities in rice. The genetic basis of these four parameters is also included in this review. MAB is another approach to rice variety improvement and development in addition to being an alternative to genetic engineering. The MAB approach shortens the varietal development time, and is therefore able to deliver improved rice varieties to farmers within a shorter period of time.
    Matched MeSH terms: Phenotype
  8. George E, Ann TJ
    Med J Malaysia, 2010 Dec;65(4):256-60.
    PMID: 21901940 MyJurnal
    The haemoglobinopathies and thalassemias represent the most common inherited monogenic disorders in the world. Beta-thalassaemia major is an ongoing public health problem in Malaysia. Prior to 2004, the country had no national policy for screening and registry for thalassemia. In the absence of a national audit, the true figure of the extent of thalassemia in the Malaysian population was largely presumptive from micro-mapping studies from various research workers in the country. The estimated carrier rate for beta-thalassemia in Malaysia is 3.5-4%. There were 4768 transfusion dependent thalassemia major patients as of May 2010 (Data from National Thalassemia Registry).
    Matched MeSH terms: Phenotype
  9. Hasima N, Dhaliwal SS, Mukherjee TK
    Anim. Genet., 1988;19(1):37-41.
    PMID: 3377277
    Genetic polymorphism of the 'X'-protein in red cells from Malaysian Katjang goats was demonstrated by starch gel electrophoresis at pH 7.3. Two new phenotypes were observed, suggesting that one new allele is involved. A new nomenclature for the 'X'-protein system in goats is proposed.
    Matched MeSH terms: Phenotype
  10. Yong HS
    Comp. Biochem. Physiol., B, 1984;78(2):321-3.
    PMID: 6236032
    Seven natural populations of Dacus dorsalis were analysed for phosphoglucomutase by means of horizontal starch-gel electrophoresis. The electrophoretic phenotypes were governed by four codominant Pgm alleles. The commonest allele in all the seven population samples was PgmB which encoded an electrophoretic band with intermediate mobility. The distributions of PGM phenotype were in accordance with Hardy-Weinberg expectations. There was geographic variation in the distribution of Pgm alleles.
    Matched MeSH terms: Phenotype
  11. Norakmal I, Tan SG
    Jinrui Idengaku Zasshi, 1979 Jun;24(2):119-21.
    PMID: 529549
    Matched MeSH terms: Phenotype
  12. Agrawal R, Testi I, Mahajan S, Yuen YS, Agarwal A, Rousselot A, et al.
    Ocul Immunol Inflamm, 2020 Apr 06.
    PMID: 32250731 DOI: 10.1080/09273948.2020.1716025
    An international, expert led consensus initiative was set up by the Collaborative Ocular Tuberculosis Study (COTS) group to develop systematic, evidence, and experience-based recommendations for the treatment of ocular TB using a modified Delphi technique process. In the first round of Delphi, the group identified clinical scenarios pertinent to ocular TB based on five clinical phenotypes (anterior uveitis, intermediate uveitis, choroiditis, retinal vasculitis, and panuveitis). Using an interactive online questionnaires, guided by background knowledge from published literature, 486 consensus statements for initiating ATT were generated and deliberated amongst 81 global uveitis experts. The median score of five was considered reaching consensus for initiating ATT. The median score of four was tabled for deliberation through Delphi round 2 in a face-to-face meeting. This report describes the methodology adopted and followed through the consensus process, which help elucidate the guidelines for initiating ATT in patients with choroidal TB.
    Matched MeSH terms: Phenotype
  13. Agrawal R, Agarwal A, Jabs DA, Kee A, Testi I, Mahajan S, et al.
    Ocul Immunol Inflamm, 2019 Dec 10.
    PMID: 31821096 DOI: 10.1080/09273948.2019.1653933
    Purpose: To standardize a nomenclature system for defining clinical phenotypes, and outcome measures for reporting clinical and research data in patients with ocular tuberculosis (OTB).Methods: Uveitis experts initially administered and further deliberated the survey in an open meeting to determine and propose the preferred nomenclature for terms related to the OTB, terms describing the clinical phenotypes and treatment and reporting outcomes.Results: The group of experts reached a consensus on terming uveitis attributable to tuberculosis (TB) as tubercular uveitis. The working group introduced a SUN-compatible nomenclature that also defines disease "remission" and "cure", both of which are relevant for reporting treatment outcomes.Conclusion: A consensus nomenclature system has been adopted by a large group of international uveitis experts for OTB. The working group recommends the use of standardized nomenclature to prevent ambiguity in communication and to achieve the goal of spreading awareness of this blinding uveitis entity.
    Matched MeSH terms: Phenotype
  14. Mazumdar P, Lau SE, Singh P, Takhtgahi HM, Harikrishna JA
    Physiol Mol Biol Plants, 2019 May;25(3):713-726.
    PMID: 31168234 DOI: 10.1007/s12298-019-00659-3
    Banana is often grown in coastal-regions, and while known for its sensitivity towards seawater, little is documented on the effect of sea-salt on the growth, physiology and metal homeostasis. Here we report that banana plantlets exposed to sea-salt at extreme (average seawater concentration; 52.7 dS m-1), severe (28.5 dS m-1) or moderate (10.2 dS m-1) salinity levels had reduced root length (2.0-6.0-fold), plant height (1.2-1.6-fold), leaf number (2.0-2.3-fold) and leaf area (3.3-4.0-fold) compared to control plantlets. Degradation of pigments (total chlorophyll: 1.3-12.3-fold, chlorophyll a: 1.3-9.2-fold; chlorophyll b: 1.3-6.9-fold lower and carotenoids: 1.4-3.7-fold lower) reflected vulnerability of photosystems to salt stress. Relative water content showed a maximum decrease of 1.5-fold in salt stress. MDA analysis showed sea-salt exposure triggers 2.3-3.5-fold higher lipid peroxidation. Metal content analysis showed a 73-fold higher Na value from roots exposed to extreme salinity compared to control plantlets. While phenotype was clearly affected, moderate salinity showed no significant alteration of macro (N, P, K and Ca) and micro (Fe, Mn and Cu) metal content. The antioxidant enzymes: SOD (3.2-fold), CAT (1.7-fold) and GR (6-fold) showed higher activity at moderate salinity level compared to control plantlets but lower activity at severe (SOD: 1.3-fold; CAT: 1.5-fold; GR: 2-fold lower) and extreme seawater salinity (SOD: 1.5; CAT: 1.9; GR: 1.3-fold lower). Mild changes in growth and physiology at sea-salt levels equivalent to moderate seawater flooding, indicate that banana will survive such flooding, while extreme seawater inundation will be lethal. This data provides a reference for future salinity-mediated work in banana.
    Matched MeSH terms: Phenotype
  15. Mohd Ikmal A, Noraziyah AAS, Wickneswari R
    Plants (Basel), 2021 Jan 24;10(2).
    PMID: 33498963 DOI: 10.3390/plants10020225
    Drought and submergence have been the major constraint in rice production. The present study was conducted to develop high-yielding rice lines with tolerance to drought and submergence by introgressing Sub1 into a rice line with drought yield QTL (qDTY; QTL = quantitative trait loci) viz. qDTY3.1 and qDTY12.1 using marker-assisted breeding. We report here the effect of different combinations of Sub1 and qDTY on morpho-physiological, agronomical traits and yield under reproductive stage drought stress (RS) and non-stress (NS) conditions. Lines with outstanding performance in RS and NS trials were also evaluated in vegetative stage submergence stress (VS) trial to assess the tolerance level. The QTL class analysis revealed Sub1 + qDTY3.1 as the best QTL combination affecting the measured traits in RS trial followed by Sub1 + qDTY12.1. The effects of single Sub1, qDTY3.1 and qDTY12.1 were not as superior as when the QTLs are combined, suggesting the positive interaction of Sub1 and qDTY. Best performing lines selected from the RS and NS trials recorded yield advantage up to 4453.69 kg ha-1 and 6954 kg ha-1 over the parents, respectively. The lines were also found having great tolerance to submergence ranging from 80% to 100%, contributed by a lower percentage of shoot elongation and reduction of chlorophyll content after 14 days of VS. These lines could provide yield sustainability to farmers in regions impacted with drought and submergence while serving as important genetic materials for future breeding programs.
    Matched MeSH terms: Phenotype
  16. Alvina Simon, Vijay Kumar Subbiah, Chee, Fong Tyng, Noor Hydayaty Md Yusuf
    MyJurnal
    Rice is the most important staple crop in Malaysia and is cultivated all over the country, including the state of Sabah. The uniqueness of rice cultivation in Sabah lies in the type of rice itself, deriving mainly from local or non-commercial cultivars but with distinctive characteristics including long grains, aromatic properties, and drought tolerance. However, despite having these important agricultural traits, information on the genetic diversity of Sabah rice remains limited. Hence, the purpose of this study was to determine the genetic polymorphisms of Sabah rice using random amplification of polymorphic DNA (RAPD) markers. A total of 101 alleles were profiled, from which 94% were identified as polymorphic. Phylogenetic analysis grouped the rice samples into three clusters, with two clusters classifying the ability of rice to grow under different planting conditions, suitable for growth irrigate and upland condition. The first cluster was dominated by cultivars that could survive in wet (irrigated) areas, while the other featured those that were found in dry (upland) areas. Furthermore, two alleles, OPA-05-B2 and OPA-01-B11, were found to be unique to cultivars within the upland cluster and were thus proposed to be involved in dry environmental adaptation. The results of the present study provide an insight into the genetic relationships and diversity of Sabah rice.
    Matched MeSH terms: Phenotype
  17. Swaray S, Y Rafii M, Din Amiruddin M, Firdaus Ismail M, Jamian S, Jalloh M, et al.
    Insects, 2021 Mar 04;12(3).
    PMID: 33806613 DOI: 10.3390/insects12030221
    This study was conducted to assess the Elaeidobius kamerunicus (EK) population density among the biparental dura × pisifera hybrids' palms on deep peat-soil. Twenty-four hybrids derived from 10 genetic sources were used. Variance analysis showed that the EK population density varies between different oil palm hybrids, with a more noticeable variation of a low population mean in the male weevil across the hybrids. The highest weevil population mean/spikelet was attained on the third day of anthesis. The maximum monthly population of EK/spikelet (12.81 ± 0.23) and population density of EK (1846.49 ± 60.69) were recorded in January. Accordingly, 41.67% of the hybrids recorded an EK population density greater than the trial means of 973.68 weevils. Hybrid ECPHP550 had the highest mean of EK/spikelet (10.25 ± 0.11) and the highest population density of EK/palm (1241.39 ± 73.74). The parental mean population was 963.24 weevils and parent Deli-Banting × AVROS recorded the highest EK population density (1173.01). The overall results showed a notable disparity in the EK population among the biparental hybrids. Parental Deli-Banting × AVROS and hybrid ECPHP550 could be more useful to optimize the weevil population for pollination improvements in palm plantations. However, we suggest that volatile production should be included as a desirable trait in oil palm selective breeding.
    Matched MeSH terms: Phenotype
  18. Hashimoto Y, Endo T, Yamasaki T, Hyodo F, Itioka T
    Sci Rep, 2020 10 26;10(1):18279.
    PMID: 33106531 DOI: 10.1038/s41598-020-75010-y
    Accurate morphological ant mimicry by Myrmarachne jumping spiders confers strong protective benefits against predators. However, it has been hypothesized that the slender and constricted ant-like appearance imposes costs on the hunting ability because their jumping power to capture prey is obtained from hydraulic pressure in their bodies. This hypothesis remains to be sufficiently investigated. We compared the jumping and prey-capture abilities of seven Myrmarachne species and non-myrmecomorphic salticids collected from tropical forests in Malaysian Borneo and northeastern Thailand. We found that the mimics had significantly reduced abilities compared with the non-mimics. The analysis using geometric morphometric techniques revealed that the reduced abilities were strongly associated with the morphological traits for ant mimicry and relatively lower abilities were found in Myrmarachne species with a more narrowed form. These results support the hypothesis that the jumping ability to capture prey is constrained by the morphological mimicry and provide a new insight into understanding the evolutionary costs of accurate mimicry.
    Matched MeSH terms: Phenotype
  19. Siddiqui MW, Lara I, Ilahy R, Tlili I, Ali A, Homa F, et al.
    Compr Rev Food Sci Food Saf, 2018 Nov;17(6):1540-1560.
    PMID: 33350145 DOI: 10.1111/1541-4337.12395
    Tomato (Solanum lycopersicon L.) fruit is rich in various nutrients, vitamins and health-promoting molecules. Fresh tomatoes are an important part of the Mediterranean gastronomy, and their consumption is thought to contribute substantially to the reduced incidence of some chronic diseases in the Mediterranean populations in comparison with those of other world areas. Unfortunately, tomato fruit is highly perishable, resulting in important economic losses and posing a challenge to storage, logistic and supply management. This review summarizes the current knowledge on some important health-promoting and eating quality traits of tomato fruits after harvest and highlights the existence of substantial cultivar-to-cultivar variation in the postharvest evolution of the considered traits according to maturity stage at harvest and in response to postharvest manipulations. It also suggests the need for adapting postharvest procedures to the characteristics of each particular genotype to preserve the optimal quality of the fresh product.
    Matched MeSH terms: Phenotype
  20. Lindgren AG, Braun RG, Juhl Majersik J, Clatworthy P, Mainali S, Derdeyn CP, et al.
    Int J Stroke, 2021 Apr 26.
    PMID: 33739214 DOI: 10.1177/17474930211007288
    Numerous biological mechanisms contribute to outcome after stroke, including brain injury, inflammation, and repair mechanisms. Clinical genetic studies have the potential to discover biological mechanisms affecting stroke recovery in humans and identify intervention targets. Large sample sizes are needed to detect commonly occurring genetic variations related to stroke brain injury and recovery. However, this usually requires combining data from multiple studies where consistent terminology, methodology, and data collection timelines are essential. Our group of expert stroke and rehabilitation clinicians and researchers with knowledge in genetics of stroke recovery here present recommendations for harmonizing phenotype data with focus on measures suitable for multicenter genetic studies of ischemic stroke brain injury and recovery. Our recommendations have been endorsed by the International Stroke Genetics Consortium.
    Matched MeSH terms: Phenotype
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links