Displaying publications 41 - 60 of 1819 in total

Abstract:
Sort:
  1. Loong SK, Mahfodz NH, Wali HA, Talib SA, Nasrah SN, Wong PF, et al.
    J Vet Med Sci, 2016 May 3;78(4):715-7.
    PMID: 26782013 DOI: 10.1292/jvms.15-0472
    Accurate identification and separation of non-classical Bordetella species is very difficult. These species have been implicated in animal infections. B. hinzii, a non-classical Bordetella, has been isolated from mice in experimental facilities recently. We isolated and characterized one non-classical Bordetella isolate from the trachea and lung of an ICR mouse. Isolate BH370 was initially identified as B. hinzii by 16S ribosomal DNA and ompA sequencing. Additionally, isolate BH370 also displayed antimicrobial sensitivity profiles similar to B. hinzii. However, analyses of nrdA sequences determined its identity as Bordetella genogroup 16. The isolation of BH370 from a healthy mouse suggests the possibility of it being a commensal. The nrdA gene was demonstrated to possess greater phylogenetic resolution as compared with 16S ribosomal DNA and ompA for the discrimination of non-classical Bordetella species.
    Matched MeSH terms: Phylogeny
  2. Mohd-Azami SNI, Loong SK, Khoo JJ, Sahimin N, Lim FS, Husin NA, et al.
    J Vet Med Sci, 2022 Jul 01;84(7):938-941.
    PMID: 35584942 DOI: 10.1292/jvms.22-0037
    Rat bocavirus (RBoV) and rodent bocavirus (RoBoV) have previously been detected in Rattus norvegicus; however, these viruses have not been reported in rodent populations in Malaysia. We investigated the presence of RBoV and RoBoV in archived rodent specimens. DNA barcoding of the rodent cytochrome c oxidase gene identified five different species: Rattus tanezumi R3 mitotype, Rattus tiomanicus, Rattus exulans, Rattus argentiventer, and Rattus tanezumi sensu stricto. Three spleens were positive for RBoV (1.84%; 3/163), but no RoBoV was detected. Phylogenetic analyzes of the partial non-structural protein 1 gene grouped Malaysian RBoV strains with RBoV strains from China. Further studies among rats from different geographical locations are warranted for this relatively new virus.
    Matched MeSH terms: Phylogeny
  3. Loong SK, Che-Mat-Seri NA, Abdulrazak O, Douadi B, Ahmad-Nasrah SN, Johari J, et al.
    J Vet Med Sci, 2018 Jan 27;80(1):77-84.
    PMID: 29237995 DOI: 10.1292/jvms.17-0218
    Rodents have historically been associated with zoonotic pandemics that claimed the lives of large human populations. Appropriate pathogen surveillance initiatives could contribute to early detection of zoonotic infections to prevent future outbreaks. Bordetella species are bacteria known to cause mild to severe respiratory disease in mammals and, some have been described to infect, colonize and spread in rodents. There is a lack of information on the population diversity of bordetellae among Malaysian wild rodents. Here, bordetellae recovered from lung tissues of wild rats were genotypically characterized using 16S rDNA sequencing, MLST and nrdA typing. A novel B. bronchiseptica ST82, closely related to other human-derived isolates, was discovered in three wild rats (n=3) from Terengganu (5.3333° N, 103.1500° E). B. pseudohinzii, a recently identified laboratory mice inhabitant, was also recovered from one rat (n=1). Both bordetellae displayed identical antimicrobial resistance profiles, indicating the close phylogenetic association between them. Genotyping using the 765-bp nrdA locus was shown to be compatible with the MLST-based phylogeny, with the added advantage of being able to genotype non-classical bordetellae. The recovery of B. pseudohinzii from wild rat implied that this bordetellae has a wider host range than previously thought. The findings from this study suggest that bordetellae surveillance among wild rats in Malaysia has to be continued and expanded to other states to ensure early identification of species capable of causing public health disorder.
    Matched MeSH terms: Phylogeny
  4. Kakuda T, Shojo H, Tanaka M, Nambiar P, Minaguchi K, Umetsu K, et al.
    PLoS One, 2016;11(6):e0158463.
    PMID: 27355212 DOI: 10.1371/journal.pone.0158463
    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.
    Matched MeSH terms: Phylogeny
  5. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: Phylogeny
  6. Haruna E, Zin NM, Kerfahi D, Adams JM
    Microb Ecol, 2018 Jan;75(1):88-103.
    PMID: 28642991 DOI: 10.1007/s00248-017-1002-2
    The extent to which distinct bacterial endophyte communities occur between different plant organs and species is poorly known and has implications for bioprospecting efforts. Using the V3 region of the bacterial 16S ribosomal RNA (rRNA) gene, we investigated the diversity patterns of bacterial endophyte communities of three rainforest plant species, comparing leaf, stem, and root endophytes plus rhizosphere soil community. There was extensive overlap in bacterial communities between plant organs, between replicate plants of the same species, between plant species, and between plant organ and rhizosphere soil, with no consistent clustering by compartment or host plant species. The non-metric multidimensional scaling (NMDS) analysis highlighted an extensively overlapping bacterial community structure, and the β-nearest taxon index (βNTI) analysis revealed dominance of stochastic processes in community assembly, suggesting that bacterial endophyte operational taxonomic units (OTUs) were randomly distributed among plant species and organs and rhizosphere soil. Percentage turnover of OTUs within pairs of samples was similar both for plant individuals of the same species and of different species at around 80-90%. Our results suggest that sampling extra individuals, extra plant organs, extra species, or use of rhizosphere soil, might be about equally effective for obtaining new OTUs for culture. These observations suggest that the plant endophyte community may be much more diverse, but less predictable, than would be expected from culturing efforts alone.
    Matched MeSH terms: Phylogeny
  7. Panda S, Banik U, Adhikary AK
    Infect Genet Evol, 2020 11;85:104439.
    PMID: 32585339 DOI: 10.1016/j.meegid.2020.104439
    Human adenovirus type 3 (HAdV-3) encompasses 15-87% of all adenoviral respiratory infections. The significant morbidity and mortality, especially among the neonates and immunosuppressed patients, demand the need for a vaccine or a targeted antiviral against this type. However, due to the existence of multiple hexon variants (3Hv-1 to 3Hv-25), the selection of vaccine strains of HAdV-3 is challenging. This study was designed to evaluate HAdV-3 hexon variants for the selection of potential vaccine candidates and the use of hexon gene as a target for designing siRNA that can be used as a therapy. Based on the data of worldwide distribution, duration of circulation, co-circulation and their percentage among all the variants, 3Hv-1 to 3Hv-4 were categorized as the major hexon variants. Phylogenetic analysis and the percentage of homology in the hypervariable regions followed by multi-sequence alignment, zPicture analysis and restriction enzyme analysis were carried out. In the phylogram, the variants were arranged in different clusters. The HVR encoding regions of hexon of 3Hv-1 to 3Hv-4 showed 16 point mutations resulting in 12 amino acids substitutions. The homology in HVRs was 81.81-100%. Therefore, the major hexon variants are substantially different from each other which justifies their inclusion as the potential vaccine candidates. Interestingly, despite the significant differences in the DNA sequence, there were many conserved areas in the HVRs, and we have designed functional siRNAs form those locations. We have also designed immunogenic vaccine peptide epitopes from the hexon protein using bioinformatics prediction tool. We hope that our developed siRNAs and immunogenic vaccine peptide epitopes could be used in the future development of siRNA-based therapy and designing a vaccine against HAdV-3.
    Matched MeSH terms: Phylogeny
  8. Takaoka H, Sofian-Azirun M, Ya'cob Z, Chen CD, Lau KW, Low VL, et al.
    Zootaxa, 2017 May 05;4261(1):1-165.
    PMID: 28609891 DOI: 10.11646/zootaxa.4261.1.1
    The biodiversity of black flies (Diptera: Simuliidae), which are biting insects of medical and veterinary importance, is strikingly high in Southeast Asian countries, such as Indonesia, Malaysia, Philippines and Thailand. In 2013, we began to explore the fauna of black flies in Vietnam, which has so far been poorly studied. In this monograph, the wealth of the biodiversity of black flies in Vietnam is also confirmed on the basis of the results of our recent investigations, though limited to five provinces in the country.      Morphotaxonomic studies of black flies obtained from Sapa, Lao Cai Province, northern Vietnam, in 2014 and Nghe An Province, northern Vietnam, in 2015, and reexaminations of black flies collected from Tam Dao, Vinh Phuc Province, northern Vietnam, in 2013, Thua Thien Hue Province, central Vietnam, in 2014, and Lam Dong Province, southern Vietnam, in 2014, were conducted. A total of 22 species are described as new, including one in the newly recorded subgenus Montisimulium Rubtsov, and three species are recognized as new records from Vietnam. This investigation brings the number of species of black flies known in Vietnam to 70, all of which are assigned to the genus Simulium Latreille, and are placed in four subgenera (25 in Gomphostilbia Enderlein, one in Montisimulium, seven in Nevermannia Enderlein, and 37 in Simulium Latreille s. str.). The numbers of species-groups recognized include seven in Gomphostilbia, three in Nevermannia and nine in Simulium, indicating a high diversity of putative phylogenetic lineages. New species include S. (G.) sanchayense sp. nov. (= the species formerly regarded as S. (G.) brinchangense Takaoka, Sofian-Azirun & Hashim), S. (S.) lowi sp. nov. (= the species formerly regarded as S. (S.) brevipar Takaoka & Davies), S. (S.) fuscicoxae sp. nov. [= the species formerly regarded as S. (S.) rufibasis Brunetti (in part)], S. (S.) suoivangense sp. nov. [= morphoform 'b' of the S. (S.) tani Takaoka & Davies (complex)]. Newly recorded species are S. (G.) parahiyangum Takaoka & Sigit, S. (N.) maeaiense Takaoka & Srisuka, and S. (S.) doipuiense Takaoka & Choochote (complex) [= the species formerly regarded as S. (S.) rufibasis Brunetti (in part)]. The substitute name, S. (S.) huense, is given for the species that was described under the name of S. (S.) cavum from southern Vietnam. A redescription of the female, male, pupa and larva of S. (G.) asakoae Takaoka & Davies is presented, and the female and larva of S. (G.) hongthaii Takaoka, Sofian-Azirun & Ya'cob are described for the first time. Keys to 10 subgenera in the Oriental Region and all 70 species recorded from Vietnam are provided for females, males, pupae and mature larvae.      As investigations extend nationwide in all the provinces in Vietnam, more new species and records are expected to be discovered. It is hoped that this monograph will be useful as a baseline taxonomic reference for future studies of black flies in Vietnam and neighbouring countries.
    Matched MeSH terms: Phylogeny
  9. Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, et al.
    Infect Genet Evol, 2015 Jan;29:216-29.
    PMID: 25445644 DOI: 10.1016/j.meegid.2014.10.032
    Virulent Newcastle disease virus (NDV) isolates from new sub-genotypes within genotype VII are rapidly spreading through Asia and the Middle East causing outbreaks of Newcastle disease (ND) characterized by significant illness and mortality in poultry, suggesting the existence of a fifth panzootic. These viruses, which belong to the new sub-genotypes VIIh and VIIi, have epizootic characteristics and do not appear to have originated directly from other genotype VII NDV isolates that are currently circulating elsewhere, but are related to the present and past Indonesian NDV viruses isolated from wild birds since the 80s. Viruses from sub-genotype VIIh were isolated in Indonesia (2009-2010), Malaysia (2011), China (2011), and Cambodia (2011-2012) and are closely related to the Indonesian NDV isolated in 2007, APMV1/Chicken/Karangasem, Indonesia (Bali-01)/2007. Since 2011 and during 2012 highly related NDV isolates from sub-genotype VIIi have been isolated from poultry production facilities and occasionally from pet birds, throughout Indonesia, Pakistan and Israel. In Pakistan, the viruses of sub-genotype VIIi have replaced NDV isolates of genotype XIII, which were commonly isolated in 2009-2011, and they have become the predominant sub-genotype causing ND outbreaks since 2012. In a similar fashion, the numbers of viruses of sub-genotype VIIi isolated in Israel increased in 2012, and isolates from this sub-genotype are now found more frequently than viruses from the previously predominant sub-genotypes VIId and VIIb, from 2009 to 2012. All NDV isolates of sub-genotype VIIi are approximately 99% identical to each other and are more closely related to Indonesian viruses isolated from 1983 through 1990 than to those of genotype VII, still circulating in the region. Similarly, in addition to the Pakistani NDV isolates of the original genotype XIII (now called sub-genotype XIIIa), there is an additional sub-genotype (XIIIb) that was initially detected in India and Iran. This sub-genotype also appears to have as an ancestor a NDV strain from an Indian cockatoo isolated in 1982. These data suggest the existence of a new panzootic composed of viruses of subgenotype VIIi and support our previous findings of co-evolution of multiple virulent NDV genotypes in unknown reservoirs, e.g. as recorded with the virulent NDV identified in Dominican Republic in 2008. The co-evolution of at least three different sub-genotypes reported here and the apparent close relationship of some of those genotypes from ND viruses isolated from wild birds, suggests that identifying wild life reservoirs may help predict new panzootics.
    Matched MeSH terms: Phylogeny
  10. Pramual P, Bunchom N, Saijuntha W, Tada I, Suganuma N, Agatsuma T
    Trop Biomed, 2019 Dec 01;36(4):938-957.
    PMID: 33597465
    Genetic variation based on mitochondrial cytochrome c oxidase I (COI) and II (COII) sequences was investigated for three black fly nominal species, Simulium metallicum Bellardi complex, S. callidum Dyar and Shannon, and S. ochraceum Walker complex, which are vectors of human onchocerciasis from Guatemala. High levels of genetic diversity were found in S. metallicum complex and S. ochraceum complex with maximum intraspecific genetic divergences of 11.39% and 4.25%, respectively. Levels of genetic diversity of these nominal species are consistent with species status for both of them as they are cytologically complexes of species. Phylogenetic analyses revealed that the S. metallicum complex from Guatemala divided into three distinct clades, two with members of this species from several Central and South American countries and another exclusively from Mexico. The Simulium ochraceum complex from Guatemala formed a clade with members of this species from Mexico and Costa Rica while those from Ecuador and Colombia formed another distinct clade. Very low diversity in S. callidum was found for both genes with maximum intraspecific genetic divergence of 0.68% for COI and 0.88% for COII. Low genetic diversity in S. callidum might be a consequence of the result being informative of only recent population history of the species.
    Matched MeSH terms: Phylogeny*
  11. Iwagami M, Ho LY, Su K, Lai PF, Fukushima M, Nakano M, et al.
    J Helminthol, 2000 Dec;74(4):315-22.
    PMID: 11138020
    The lung fluke, Paragonimus westermani (Kerbert, 1878), is widely distributed in Asia, and exhibits much variation in its biological properties. Previous phylogenetic studies using DNA sequences have demonstrated that samples from north-east Asia form a tight group distinct from samples from south Asia (Philippines, Thailand, Malaysia). Among countries from the latter region, considerable molecular diversity was observed. This was investigated further using additional DNA sequences (partial mitochondrial cytochrome c oxidase subunit 1 (COI) and the second internal transcribed spacer of the nuclear ribosomal gene repeat (ITS2)) from additional samples of P. westermani. Phylogenies inferred from these again found three or four groups within P. westermani, depending on the method of analysis. Populations of P. westermani from north-east Asia use snail hosts of the family Pleuroceridae and differ in other biological properties from populations in south Asia (that use snail hosts of the family Thiaridae). It is considered that the populations we sampled can be divided into two species, one in north-east Asia and the other in south Asia.
    Matched MeSH terms: Phylogeny
  12. Chandramouli SR, Vasudevan K, Harikrishnan S, Dutta SK, Janani SJ, Sharma R, et al.
    Zookeys, 2016.
    PMID: 26877687 DOI: 10.3897/zookeys.555.6522
    A new bufonid amphibian, belonging to a new monotypic genus, is described from the Andaman Islands, in the Bay of Bengal, Republic of India, based on unique external morphological and skeletal characters which are compared with those of known Oriental and other relevant bufonid genera. Blythophryne gen. n. is distinguished from other bufonid genera by its small adult size (mean SVL 24.02 mm), the presence of six presacral vertebrae, an absence of coccygeal expansions, presence of an elongated pair of parotoid glands, expanded discs at digit tips and phytotelmonous tadpoles that lack oral denticles. The taxonomic and phylogenetic position of the new taxon (that we named as Blythophryne beryet gen. et sp. n.) was ascertained by comparing its 12S and 16S partial genes with those of Oriental and other relevant bufonid lineages. Resulting molecular phylogeny supports the erection of a novel monotypic genus for this lineage from the Andaman Islands of India.
    Matched MeSH terms: Phylogeny
  13. Cejp B, Jimi N, Aguado MT
    Zootaxa, 2023 Feb 21;5244(4):341-360.
    PMID: 37044457 DOI: 10.11646/zootaxa.5244.4.2
    The phylogenetic relationships of Syllidae have been analyzed in several studies during the last decades, resulting in highly congruent topologies. Most of the subfamilies were found to be monophyletic, while other groups (Eusyllinae and several genera) have been reorganized attending their phylogenetic relationships. However, there are still several enigmatic genera, which could not be assigned to any of the established subgroups. These enigmatic genera usually show a combination of characters indicating relationships with several different groups, and some show morphological traits unique to Syllidae. One of the most intriguing genera, still unclassified within Syllidae is Clavisyllis Knox. Herein, we provide a complete description of a new species Clavisyllis tenjini n. sp. from Japan. We sequence the complete mitochondrial genome, compare with the available data from other syllids, and perform a phylogenetic analysis of three genes (18S, 16S, COI), traditionally used in previous studies. Clavisyllis shows a unique combination of characters within Syllidae, such as nuchal lappets and large ovoid dorsal cirri. The new species has additional anterior appendages that have not been found in any other syllid. Our results show the genus is a member of Eusyllinae, closely related to Pionosyllis Malmgren. The mitochondrial gene order agrees with the considered plesiomorphic gene order in Annelida, which is present in all members of Eusyllinae investigated so far. Clavisyllis reproduces by epigamy, the reproductive mode of members of Eusyllinae. The present study contributes to the systematics of Syllidae, a complex group with a large number of species and striking reproductive modes.
    Matched MeSH terms: Phylogeny
  14. Trinachartvanit W, Maneewong S, Kaenkan W, Usananan P, Baimai V, Ahantarig A
    Parasit Vectors, 2018 Dec 27;11(1):670.
    PMID: 30587229 DOI: 10.1186/s13071-018-3259-9
    BACKGROUND: Coxiella bacteria were identified from various tick species across the world. Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii that most commonly infects a variety of mammals. Non-mammalian hosts, such as birds, have also been reported to be infected with the pathogenic form of "Candidatus Coxiella avium". This research increases the list of tick species that have been found with Coxiella-like bacteria in Thailand.

    METHODS: A total of 69 ticks were collected from 27 domestic fowl (Gallus gallus domesticus), 2 jungle fowl (Gallus gallus) and 3 Siamese firebacks (Lophura diardi) at 10 locations (provinces) in Thailand. Ticks were identified and PCR was used to amplify Coxiella bacteria 16S rRNA, groEL and rpoB genes from the extracted tick DNA. MEGA6 was used to construct phylogenetic trees via a Maximum Likelihood method.

    RESULTS: The phylogenetic analysis based on the 16S rRNA gene showed that the Coxiella sequences detected in this study grouped in the same clade with Coxiella sequences from the same tick genus (or species) reported previously. In contrast, rpoB gene of the Coxiella bacteria detected in this study did not cluster together with the same tick genus reported previously. Instead, they clustered by geographical distribution (Thai cluster and Malaysian cluster). In addition, phylogenetic analysis of the groEL gene (the chaperonin family) showed that all Coxiella bacteria found in this study were grouped in the same clade (three sister groups).

    CONCLUSIONS: To our knowledge, we found for the first time rpoB genes of Coxiella-like bacteria in Haemaphysalis wellingtoni ticks forming two distinct clades by phylogenetic analysis. This may be indicative of a horizontal gene transfer event.

    Matched MeSH terms: Phylogeny
  15. Bloh AH, Usup G, Ahmad A
    Vet World, 2016 Feb;9(2):142-6.
    PMID: 27051199 DOI: 10.14202/vetworld.2016.142-146
    AIM: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03.

    MATERIALS AND METHODS: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree.

    RESULTS: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity).

    CONCLUSION: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

    Matched MeSH terms: Phylogeny
  16. Odeyemi OA, Ahmad A
    Microb Pathog, 2017 Feb;103:178-185.
    PMID: 28062284 DOI: 10.1016/j.micpath.2017.01.007
    This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health.
    Matched MeSH terms: Phylogeny
  17. Ghani IA, Dieng H, Abu Hassan ZA, Ramli N, Kermani N, Satho T, et al.
    PLoS One, 2013;8(12):e81642.
    PMID: 24349104 DOI: 10.1371/journal.pone.0081642
    Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera.
    Matched MeSH terms: Phylogeny*
  18. Shaari N'AL, Jaoi-Edward M, Loo SS, Salisi MS, Yusoff R, Ab Ghani NI, et al.
    BMC Genet, 2019 03 25;20(1):37.
    PMID: 30909863 DOI: 10.1186/s12863-019-0741-0
    BACKGROUND: In Malaysia, the domestic water buffaloes (Bubalus bubalis) are classified into the swamp and the murrah buffaloes. Identification of these buffaloes is usually made via their phenotypic appearances. This study characterizes the subspecies of water buffaloes using karyotype, molecular and phylogenetic analyses. Blood of 105 buffaloes, phenotypically identified as swamp, murrah and crossbred buffaloes were cultured, terminated and harvested using conventional karyotype protocol to determine the number of chromosomes. Then, the D-loop of mitochondrial DNA of 10 swamp, 6 crossbred and 4 murrah buffaloes which were identified earlier by karyotyping were used to construct a phylogenetic tree was constructed.

    RESULTS: Karyotypic analysis confirmed that all 93 animals phenotypically identified as swamp buffaloes with 48 chromosomes, all 7 as crossbreds with 49 chromosomes, and all 5 as murrah buffaloes with 50 chromosomes. The D-loop of mitochondrial DNA analysis showed that 10 haplotypes were observed with haplotype diversity of 0.8000 ± 0.089. Sequence characterization revealed 72 variables sites in which 67 were parsimony informative sites with sequence diversity of 0.01906. The swamp and murrah buffaloes clearly formed 2 different clades in the phylogenetic tree, indicating clear maternal divergence from each other. The crossbreds were grouped within the swamp buffalo clade, indicating the dominant maternal swamp buffalo gene in the crossbreds.

    CONCLUSION: Thus, the karyotyping could be used to differentiate the water buffaloes while genotypic analysis could be used to characterize the water buffaloes and their crossbreds.

    Matched MeSH terms: Phylogeny
  19. Natasha JA, Yasmin AR, Sharma RSK, Nur-Fazila SH, Nur-Mahiza MI, Arshad SS, et al.
    PLoS Negl Trop Dis, 2023 Apr;17(4):e0011255.
    PMID: 37023172 DOI: 10.1371/journal.pntd.0011255
    Being a tropical country with a conducive environment for mosquitoes, mosquito-borne illnesses such as dengue, chikungunya, lymphatic filariasis, malaria, and Japanese encephalitis are prevalent in Malaysia. Recent studies reported asymptomatic infection of West Nile virus (WNV) in animals and humans, but none of the studies included mosquitoes, except for one report made half a century ago. Considering the scarcity of information, our study sampled mosquitoes near migratory bird stopover wetland areas of West Coast Malaysia located in the Kuala Gula Bird Sanctuary and Kapar Energy Venture, during the southward migration period in October 2017 and September 2018. Our previous publication reported that migratory birds were positive for WNV antibody and RNA. Using a nested RT-PCR analysis, WNV RNA was detected in 35 (12.8%) out of 285 mosquito pools consisting of 2,635 mosquitoes, most of which were Culex spp. (species). Sanger sequencing and phylogenetic analysis revealed that the sequences grouped within lineage 2 and shared 90.12%-97.01% similarity with sequences found locally as well as those from Africa, Germany, Romania, Italy, and Israel. Evidence of WNV in the mosquitoes substantiates the need for continued surveillance of WNV in Malaysia.
    Matched MeSH terms: Phylogeny
  20. Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Chinni SV, Ahmad MA
    Int J Biol Macromol, 2019 Jul 15;133:1288-1298.
    PMID: 31055112 DOI: 10.1016/j.ijbiomac.2019.05.003
    A report on the de novo Whole Genome Sequence (WGS) of Marinobacter litoralis SW-45, a moderately salt-tolerant bacterium isolated from the seawater in Malaysia is presented. The strain has a genome size of 3.45 Mb and is capable of producing halophilic lipase, protease and esterase enzymes. Computational prediction of non-coding RNA (ncRNA) genes in M. litoralis SW-45 was performed using standalone software known as the non-coding RNA characterization (nocoRNAc). In addition, a phylogenetic tree showing the evolutionary relationship between the strain and other members of the genus Marinobacter was constructed using 16SrRNA sequence information. A total of 385 ncRNA transcripts, 1124 terminator region, and 2350 Stress Induced Duplex Destabilization sites were predicted. The current WGS shotgun project has provided the relevant genetic information that may be useful for the strain's improvement studies. This manuscript gives the first description of M. litoralis with a complete genome.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links