Micro powder injection molding (vim) is a promising process that may satisfy the demand on miniaturization parts to micro domain in mass production with low manufacturing cost. Three mol% yttria stabilized zirconia (Ysz) with nano-sized powder and binder system consists of polyethylene glycol (PEG), polymethyl methacrylate (PMMA) and stearic acid (sA) were used. Nano-size powders with higher surface area generally require more binder to form a feedstock. As such, determination of the optimum powder loading of the feedstock for 1UPIM process is important. The rheological characteristics of different YSZ feedstocks with powder loading of 52 53 and 54 vol.% were investigated in terms of flow behavior as a function of viscosity and shear rate. Fairly low values of flow behavior exponent ranging from 025 to 0.39 (n<1) resulted in pseudoplastic flow behavior of the examined Yszfeedstock. The 52 vol.% feedstock exhibited the lowest viscosity resulting in highest activation energy and lowest moldability index of 1.862x10-6, while the 54 vol.% feedstock regardless to its high viscosity, yielded a low activation energy of 4.14 kJImol and high moldability index of 4.59x10-6. Based on rheological properties obtained, a powder loading of 54 vol.% has desirable feedstock characteristics for iumm process and exhibited molding ability for micro detail filling. The relationship between the optimum rheological properties obtained and the actual injection process was also determined. The results showed that the green parts were able to be injected without defects such as short shot or flashing.
The transient response of magnetorheological (MR) materials, in general, is very important for design consideration in MR-based devices. Better response to magnetic fields is beneficial for a better response rate to the electrical current applied in the electromagnetic coil. As a result, MR-based devices would have a high response to external stimuli. In this work, the principal characteristics of magnetorheological greases (MRGs) which have two different particle shapes are experimentally investigated. One type of particle distributed in the grease medium is conventional spherical-shaped carbonyl iron (CI) particles, while the other is plate-like CI particles made using a high-energy rotary ball mill from spherical CI particles. A set of bidisperse MRG samples are firstly prepared by adjusting the weight percentage of the plate-like CI particles and mixing with the spherical CI particles. Subsequently, three important properties of MRGs in terms of their practical application are measured and compared between the two different particle shapes. The field-dependent apparent viscoelastic properties of the prepared MRG samples are measured, followed by the field-dependent storage and loss moduli using an oscillatory shear rheometer. In addition, the transient response time, which indicates the speed in the actuating period of MRGs, is measured by changing the strain amplitude. Then, a comparative assessment on the three properties are undertaken between two different particle shapes by presenting the corresponding results in the same plot. It is shown that the bidisperse MRG with plate-like CI particles exhibits an increase in the initial apparent viscosity as well as stiffness property compared to the MRG with spherical particles only.
This paper delves into the problem of mixed convection boundary layer flow from a horizontal circular cylinder filled in
a Jeffrey fluid with viscous dissipation effect. Both cases of cooled and heated cylinders are discussed. The governing
equations which have been converted into a dimensionless form using the appropriate non-dimensional variables are solved
numerically through the Keller-box method. A comparative study is performed and authentication of the present results
with documented outcomes from formerly published works is excellently achieved. Tabular and graphical representations
of the numerical results are executed for the specified distributions, considering the mixed convection parameter, Jeffrey
fluid parameters and the Prandtl and Eckert numbers. Interestingly, boundary layer separation for mixed convection
parameter happens for some positive (assisting flow) and negative (opposing flow) values. Strong assisting flow means
the cylinder is heated, which causes the delay in boundary layer separation, whereas strong opposing flow means the
cylinder is cooled, which conveys the separation point close to the lower stagnation point. Contradictory behaviours
of both Jeffrey fluid parameters are observed over the velocity and temperature profiles together with the skin friction
coefficient and Nusselt number. The increase of the Prandtl number leads to the decrement of the temperature profile,
while the increase of the Eckert number results in the slight increment of the skin friction coefficient and decrement of
the Nusselt number. Both velocity and temperature profiles of Eckert number show no effects at the lower stagnation
point of the cylinder.
Heat explosions are sometimes observed during the synthesis of phenol formaldehyde (PF) resin. This scenario can be attributed to the high latent heat that was released and not dissipated leading to the occurrence of a runaway reaction. The synthesis temperature and time played important roles in controlling the heat release, hence preventing the resin from hardening during the synthesis process. This study aims to assess the rheological and viscoelasticity behaviors of the PF resin prepared using paraformaldehyde. The prepared PF resin was designed for laminate applications. The rheological behavior of the PF resin was assessed based on the different molar ratios of phenol to paraformaldehyde (P:F) mixed in the formulation. The molar ratios were set at 1.00:1.25, 1.00:1.50 and 1.00:1.75 of P to F, respectively. The rheological study was focused at specific synthesis temperatures, namely 40, 60, 80 and 100 °C. The synthesis time was observed for 240 min; changes in physical structure and viscosity of the PF resins were noted. It was observed that the viscosity values of the PF resins prepared were directly proportional to the synthesis temperature and the formaldehyde content. The PF resin also exhibited shear thickening behavior for all samples synthesized at 60 °C and above. For all PF resin samples synthesized at 60 °C and above, their viscoelasticity results indicated that the storage modulus (G'), loss modulus(G″) and tan δ are proportionally dependent on both the synthesis temperature and the formaldehyde content. Heat explosions were observed during the synthesis of PF resin at the synthesis temperature of 100 °C. This scenario can lead to possible runaway reaction which can also compromise the safety of the operators.
The influence of oyster mushroom (pleurotus sajor-caju, PSC) powder on the physical
properties of herbal seasoning (HS) was investigated. The pH, total solid, viscosity, rheology
and texture of semi solid HS containing different PSC powder level (0%, 20%, 40%, 60%,
8%, 100% w/w) of coconut milk powder were measured. The pH of the products were in the
range of 4.05 - 4.15. Rheological behavior was characterized by oscillatory rheometry. Stress
sweep, frequency sweep and steady stress experiments were conducted to study the behavior
of the products. The products showed non Newtonian characteristic or shear thinning. All
samples were G’> G’’ showed the gel like network. In addition, the back extrusion rig texture
analysis showed the correlation among the samples were also studied. Total substitution of PSC
powder (100% w/w) in the formulation resulted more viscous product and the combination
of the coconut milk powder and PSC powder showed the best spreadability and flow to the
product characteristics. No added PSC powder (0% w/w) showed the least viscous products
and the less moduli among the samples studied. The present study suggested the incorporation
of more than 40% PSC powder to replace coconut milk powder give better flowability and not
affect the viscosity of the products.
The application of ultrasound shear wave elastography for detecting chronic kidney disease, namely renal fibrosis, has been widely studied. A good correlation between tissue Young's modulus and the degree of renal impairment has been established. However, the current limitation of this imaging modality pertains to the linear elastic assumption used in quantifying the stiffness of renal tissue in commercial shear wave elastography systems. As such, when underlying medical conditions such as acquired cystic kidney disease, which may potentially influence the viscous component of renal tissue, is present concurrently with renal fibrosis, the accuracy of the imaging modality in detecting chronic kidney disease may be affected. The findings in this study demonstrate that quantifying the stiffness of linear viscoelastic tissue using an approach similar to those implemented in commercial shear wave elastography systems led to percentage errors as high as 87%. The findings presented indicate that use of shear viscosity to detect changes in renal impairment led to a reduction in percentage error to values as low as 0.3%. For cases in which renal tissue was affected by multiple medical conditions, shear viscosity was found to be a good indicator in gauging the reliability of the Young's modulus (quantified through a shear wave dispersion analysis) in detecting chronic kidney disease. The findings show that percentage error in stiffness quantification can be reduced to as low as 0.6%. The present study demonstrates the potential use of renal shear viscosity as a biomarker to improve the detection of chronic kidney disease.
Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.
The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.
Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles.
The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
The mechanical behavior of the heart muscle tissues is the central problem in finite element simulation of the heart contraction, excitation propagation and development of an artificial heart. Nonlinear elastic and viscoelastic passive material properties of the left ventricular papillary muscle of a guinea pig heart were determined based on in-vitro precise uniaxial and relaxation tests. The nonlinear elastic behavior was modeled by a hypoelastic model and different hyperelastic strain energy functions such as Ogden and Mooney-Rivlin. Nonlinear least square fitting and constrained optimization were conducted under MATLAB and MSC.MARC in order to obtain the model material parameters. The experimental tensile data was used to get the nonlinear elastic mechanical behavior of the heart muscle. However, stress relaxation data was used to determine the relaxation behavior as well as viscosity of the tissues. Viscohyperelastic behavior was constructed by a multiplicative decomposition of a standard Ogden strain energy function, W, for instantaneous deformation and a relaxation function, R(t), in a Prony series form. The study reveals that hypoelastic and hyperelastic (Ogden) models fit the tissue mechanical behaviors well and can be safely used for heart mechanics simulation. Since the characteristic relaxation time (900 s) of heart muscle tissues is very large compared with the actual time of heart beating cycle (800 ms), the effect of viscosity can be reasonably ignored. The amount and type of experimental data has a strong effect on the Ogden parameters. The in vitro passive mechanical properties are good initial values to start running the biosimulation codes for heart mechanics. However, an optimization algorithm is developed, based on clinical intact heart measurements, to estimate and re-correct the material parameters in order to get the in vivo mechanical properties, needed for very accurate bio-simulation and for the development of new materials for the artificial heart.
Natural rubber from hevea brasiliensis trees (Thailand, RRIM 600 clone) of different age (8, 20, and 35 years) were characterized by size exclusion chromatography coupled with online viscometry according to their distribution of molar mass and branching index at a temperature of 70 degrees C using cyclohexane as solvent. Washing with an aqueous solution of sodium dodecylsulfate and subsequent saponification purified the natural rubber samples. With this procedure physical branching points caused by phospholipids, proteins and hydrophobic terminal units, mainly fatty acids, of the natural rubber (cis-1,4-polyisoprene) molecule, could be removed leading to completely soluble polymer samples. All samples investigated possess a very broad (10 to 50,000 kg/mol) and distinct bimodal molar mass distribution. With increasing age the peak area in the low molar mass region decreases favoring the peak area in the high molar mass region. By plotting the branching index as a function of the both, the molar mass and the age of the trees.
This paper presents a unique synergistic behavior between a graphene oxide (GO) and graphene nanoplatelet (GnP) composite in an aqueous medium. The results showed that GO stabilized GnP colloid near its isoelectric point and prevented rapid agglomeration and sedimentation. It was considered that a rarely encountered charge-dependent electrostatic interaction between the highly charged GO and weakly charged GnP particles kept GnP suspended at its rapid coagulation and phase separation pH. Sedimentation and transmission electron microscope (TEM) micrograph images revealed the evidence of highly stable colloidal mixtures while zeta potential measurement provided semi-quantitative explanation on the mechanism of stabilization. GnP suspension was confirmed via UV-vis spectral data while contact angle measurement elucidated the close resemblance to an aqueous solution indicating the ability of GO to mediate the flocculation prone GnP colloids. About a tenfold increase in viscosity was recorded at a low shear rate in comparison to an individual GO solution due to a strong interaction manifested between participating colloids. An optimum level of mixing ratio between the two constituents was also obtained. These new findings related to an interaction between charge-based graphitic carbon materials would open new avenues for further exploration on the enhancement of both GO and GnP functionalities particularly in mechanical and electrical domains.
It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up.
High-energy electron (2.0 MV) and gamma irradiation (60Co) has been used to modify polymeric silicone fluids of initial viscosities in the range, 90-700 cSt. Doses of electron and gamma radiation were delivered at rates of 0.246 kGy s(-1) and 15 kGy h(-1), respectively, exposure times being adjusted to ensure energy deposition in the range 30-360 kGy. Measurements were made using a differential viscometer based on a Bose Institute design. In line with expectation, samples of greater initial molecular weight (and hence greater viscosity), were observed to be more susceptible to radiation induced cross-linking than those of lower molecular weight. The role of dose rate and oxygen diffusion in determining the extent of change is discussed.
The spread of graphene in low-density polyethylene (LDPE) improves LDPE/graphene nanocompounds' thermal/mechanical/electrical characteristics. The images of scanning electron microscopy (SEM) verify full graphene exfoliation at 1000 °C. Inclusion graphene develops crystallinity; increases the local order of lattice and thermal stability of LDPE/graphene nanocompounds. The consistent distributions and further inclusion of graphene caused the great heat breakdown strength, increasing heat breakdown activation energy and a superior melting point (Tm) for LDPE nanocompounds. Percolation occurs with the graphene incorporation of 0.5 wt%. The complex viscosity test showed Newtonian behavior for LDPE at a very low frequency. But, graphene inclusion to LDPE changed the viscosity performance from liquid-like to solid-like which caused a decrease in the melt flow rate (MFR) values for all LDPE/graphene nanocompounds.
A suitable and cost-effective microfabrication technique for processing aluminum micropart is required, as the choice
of aluminum microparts for aerospace, electronics and automobile components is preferred over other metals due to its
excellent properties. Meanwhile, powder injection molding (PIM) is identified as an economical manufacturing technique
for processing ceramic and micro-metal powders into microparts and or components. Therefore, this study investigates
formulation and processing of aluminum PIM feedstock using a custom-made machine. The investigation is focused on
the effect of mixing process parameters (powder loading, rotor speed and mixing temperature) and the suitability of
the backbone polymer. The formulated PIM feedstock constituents are paraffin wax (PW), stearic acid (SA), high-density
polyethylene (HDPE)/ medium-density polyethylene (MDPE) alternatively and aluminum micro-metal powder. Taguchi
method is used for the design of experiments (DOEs) and analysis. In addition, response surface methodology (RSM) is
employed to develop empirical viscosity models. The optimum powder-binder mixing ratio of 58:42 vol. % with rotor
speed of 43 rpm were determined for preparing aluminum PIM feedstock using mini-lab mixer developed. The empirical
model developed for aluminum PIM feedstock viscosity shows a good fit with R2
values of 0.84 using HDPE and 0.96 for
MDPE binder system. This investigation demonstrates preparation and suitability of aluminum PIM feedstock using waxbased
binder system.
Granulation is an important step during the production of urea granules. Most of the commercial binders used for granulation are toxic and non-biodegradable. In this study, a fully biodegradable and cost-effective starch-based binder is used for urea granulation in a fluidized bed granulator. The effect of binder properties such as viscosity, surface tension, contact angle, penetration time, and liquid bridge bonding force on granulation performance is studied. In addition, the effect of fluidized bed process parameters such as fluidizing air inlet velocity, air temperature, weight of primary urea particles, binder spray rate, and binder concentration is also evaluated using response surface methodology. Based on the results, binder with higher concentration demonstrates higher viscosity and higher penetration time that potentially enhance the granulation performance. The viscous Stokes number for binder with higher concentration is lower than critical Stokes number that increases coalescence rate. Higher viscosity and lower restitution coefficient of urea particles result in elastic losses and subsequent successful coalescence. Statistical analysis indicate that air velocity, air temperature, and weight of primary urea particles have major effects on granulation performance. Higher air velocity increases probability of collision, whereby lower temperature prevents binder to be dried up prior to collision. Findings of this study can be useful for process scale-up and industrial application.
Introduction: Collagen and gelatin are essential protein in vertebrates and extensively used in various industries. Methods: In this study, acid-solubilized collagen and gelatin were extracted from the scales of three different species of freshwater fish namely Kelah (Tombroides), Tilapia (Oreochromis niloticus) and Snakehead fish (Channidae) and then further quantified using Bradford assay and separated by molecular weight using SDS-PAGE. Results: The extracted collagen in Tilapia fish scale was found to be the highest with 0.018 of protein absorbance among the other three fish; Kelah fish (0.017) and Snakehead fish (0.011). For gelatin, Snakehead fish scales showed the highest amount of total protein concentration followed by Tilapia and Kelah fish with 0.467, 0.144 and 0.037 μg/μL per g, respectively. Based on the SDS-PAGE results, collagen from all the three freshwater fishes were identified as a type 1 (molecular weight approximately from 95 to 130 kDa) collagen. As for gelatin, only gelatin from Snakehead fish scale was identified to be a type 1(molecular weight approximately from 95 to 130 kDa) while the other two freshwater fishes showed no clear band due to high viscosity of the gelatin produced. Conclusion: It can be said that the fishes investigated in this study have a potential to be the alternative source of collagen and gelatin.
The objectives of this study were to study the extrusion of cross-linked waxy maize starches (CLWMS) with different cross-linking levels and their function as a secondary ingredient in extruded oat flour (OF) formulations. CLWMS (18 %) and OF (82 %) were hydrated to 20 % moisture content and subjected to twin-screw extrusion at the screw speed of 350 rpm. Low cross-linking level of CLWMS (0.05 % sodium trimetaphosphate/sodium tripolyphosphate) in OF formulation increased the void fraction and reduced the breaking strength of extrudates. The low cross-linked starch was more resistant to breakdown and had a higher pasting viscosity than the unmodified starch. Higher cross-linking levels of CLWMS restricted swelling of starch granule and increased the resistant starch level of OF formulation but had very poor structural and textural properties. Varying the level of cross-linking offers an alternative way to manipulate the structural, textural and nutritional properties of extrudates in snack and cereal applications.