Displaying publications 41 - 60 of 512 in total

Abstract:
Sort:
  1. Mohamed MA, Abd Mutalib M, Mohd Hir ZA, M Zain MF, Mohamad AB, Jeffery Minggu L, et al.
    Int J Biol Macromol, 2017 Oct;103:1232-1256.
    PMID: 28587962 DOI: 10.1016/j.ijbiomac.2017.05.181
    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy.
    Matched MeSH terms: Water Purification/methods*
  2. Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Hussain I, et al.
    Chemosphere, 2022 Jan;286(Pt 1):131651.
    PMID: 34346345 DOI: 10.1016/j.chemosphere.2021.131651
    Nanostructured photocatalysts commonly offered opportunities to solve issues scrutinized with the environmental challenges caused by steep population growth and rapid urbanization. This photocatalyst is a controllable characteristic, which can provide humans with a clean and sustainable ecosystem. Over the last decades, one of the current thriving research focuses on visible-light-driven CeO2-based photocatalysts due to their superior characteristics, including unique fluorite-type structure, rigid framework, and facile reducing oxidizing properties of cerium's tetravalent (Ce4+) and trivalent (Ce3+) valence states. Notwithstanding, owing to its inherent wide energy gap, the solar energy utilization efficiency is low, which limits its application in wastewater treatment. Numerous modifications of CeO2 have been employed to enhance photodegradation performances, such as metals and non-metals doping, adding support materials, and coupling with another semiconductor. Besides, all these doping will form a different heterojunction and show a different way of electron-hole migration. Compared to conventional heterojunction, advanced heterojunction types such as p-n heterojunction, Z-scheme, Schottky junction, and surface plasmon resonance effect exhibit superior performance for degradation owing to their excellent charge carrier separation, and the reaction occurs at a relatively higher redox potential. This review attends to providing deep insights on heterojunction mechanisms and the latest progress on photodegradation of various contaminants in wastewater using CeO2-based photocatalysts. Hence, making the CeO2 photocatalyst more foresee and promising to further development and research.
    Matched MeSH terms: Water Purification*
  3. Mohd Firdaus R, Berrada N, Desforges A, Mohamed AR, Vigolo B
    Chem Asian J, 2020 Oct 01;15(19):2902-2924.
    PMID: 32779360 DOI: 10.1002/asia.202000747
    The combination of exceptional functionalities offered by 3D graphene-based macrostructures (GBMs) has attracted tremendous interest. 2D graphene nanosheets have a high chemical stability, high surface area and customizable porosity, which was extensively researched for a variety of applications including CO2 adsorption, water treatment, batteries, sensors, catalysis, etc. Recently, 3D GBMs have been successfully achieved through few approaches, including direct and non-direct self-assembly methods. In this review, the possible routes used to prepare both 2D graphene and interconnected 3D GBMs are described and analyzed regarding the involved chemistry of each 2D/3D graphene system. Improvement of the accessible surface of 3D GBMs where the interface exchanges are occurring is of great importance. A better control of the chemical mechanisms involved in the self-assembly mechanism itself at the nanometer scale is certainly the key for a future research breakthrough regarding 3D GBMs.
    Matched MeSH terms: Water Purification
  4. Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM
    Molecules, 2018 Oct 18;23(10).
    PMID: 30340415 DOI: 10.3390/molecules23102689
    The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
    Matched MeSH terms: Water Purification/methods*
  5. Sarwono A, Man Z, Bustam MA, Subbarao D, Idris A, Muhammad N, et al.
    Environ Technol, 2018 Jun;39(12):1522-1532.
    PMID: 28524800 DOI: 10.1080/09593330.2017.1332108
    Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10-7 cm2/s at 25°C, from 5.3 to 2.9 × 10-7 cm2/s at 35°C and from 6.2 to 3.8 × 10-7 cm2/s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.
    Matched MeSH terms: Water Purification
  6. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
    Matched MeSH terms: Water Purification/methods*
  7. Tijani HI, Abdullah N, Yuzir A, Ujang Z
    Bioresour Technol, 2015 Jun;186:276-85.
    PMID: 25836036 DOI: 10.1016/j.biortech.2015.02.107
    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area.
    Matched MeSH terms: Water Purification/methods*
  8. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;45(3):53-60.
    PMID: 11902481
    The sewer is an integral part of the urban wastewater system: the sewer, the wastewater treatment plant and the local receiving waters. The sewer is a reactor for microbial changes of the wastewater during transport, affecting the quality of the wastewater and thereby the successive treatment processes or receiving water impacts during combined sewer overflows. This paper presents the results of studies on anoxic processes, namely denitrification, in the bulk water phase of wastewater as it occurs in sewers. Experiments conducted on 12 different wastewater samples have shown that the denitrification process in the bulk wastewater can be simplified by the reduction of nitrate to nitrogen with significant accumulation of nitrite in the water phase. Utilization of nitrate was observed not to be limited by nitrate for concentrations above 5 gNO3-N/m3. The denitrification rates, under conditions of excess substrate and electron acceptor, were found to be in the range of 0.8-2.0 g NO3-N/(m3h). A discussion on the interaction of the sewer processes and the effects on a downstream located wastewater treatment plant (WWTP) is provided.
    Matched MeSH terms: Water Purification/methods*
  9. Pandey AK, Reji Kumar R, B K, Laghari IA, Samykano M, Kothari R, et al.
    J Environ Manage, 2021 Nov 01;297:113300.
    PMID: 34293672 DOI: 10.1016/j.jenvman.2021.113300
    This article offers a trend of inventions and implementations of photocatalysis process, desalination technologies and solar disinfection techniques adapted particularly for treatment of industrial and domestic wastewater. Photocatalysis treatment of wastewater using solar energy is a promising renewable solution to reduce stresses on global water crisis. Rendering to the United Nation Environment Programme, 1/3 of world population live in water-stressed countries, while by 2025 about 2/3 of world population will face water scarcity. Major pollutants exhibited from numerous sources are critically discussed with focus on potential environmental impacts & hazards. Treatment of wastewater by photocatalysis technique, solar thermal electrochemical process, solar desalination of brackish water and solar advanced oxidation process have been presented and systematically analysed with challenges. Both heterogenous and homogenous photocatalysis techniques employed for wastewater treatment are critically reviewed. For treating domestic wastewater, solar desalination technologies adopted for purifying brackish water into potable water is presented along with key challenges and remedies. Advanced oxidation process using solar energy for degradation of organic pollutant is an important technique to be reviewed due to their effectiveness in wastewater treatment process. Present article focused on three key issues i.e. major pollutants, wastewater treatment techniques and environmental benefits of using solar power for removal of pollutants. The review also provides close ideas on further research needs and major concerns. Drawbacks associated with conventional wastewater treatment options and direct solar energy-based wastewater treatment with energy storage systems to make it convenient during day and night both listed. Although, energy storage systems increase the overall cost of the wastewater treatment plant it also increases the overall efficiency of the system on environmental cost. Cost-efficient wastewater treatment methods using solar power would significantly ensure effective water source utilization, thereby contributing towards sustainable development goals.
    Matched MeSH terms: Water Purification*
  10. Alam MZ, Muyibi SA, Toramae J
    J Environ Sci (China), 2007;19(6):674-7.
    PMID: 17969639
    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800 degrees C. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2 = 0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R2 = 0.88).
    Matched MeSH terms: Water Purification/methods
  11. Chen SH, Cheow YL, Ng SL, Ting ASY
    J Hazard Mater, 2019 01 15;362:394-402.
    PMID: 30248661 DOI: 10.1016/j.jhazmat.2018.08.077
    Penicillium simplicissimum (isolate 10), a metal tolerant fungus, tolerated 1000 mg/L Cu and 500 mg/L Zn, but were inhibited by Cd (100 mg/L), evident by the Tolerance Index (TI) of 0.88, 0.83, and 0.08, respectively. Live cells of P. simplicissimum were more effective in removing Cr (88.6%), Pb (73.7%), Cu (63.8%), Cd (33.1%), and Zn (28.3%) than dead cells (5.3-61.7%). Microscopy approach via SEM-EDX and TEM-EDX suggested that metal removal involved biosorption and bioaccumulation, with metal precipitates detected on the cell wall, and in the cytoplasm and vacuoles. FTIR analysis revealed metals interacted with amino, carbonyl, hydroxyl, phosphoryl (except Cd) and nitro groups in the cell wall. Biosorption and bioaccumulation of metals by live cells reduced Cu and Pb toxicity, observed from good root and (4.00-4.28 cm) and shoot (8.07-8.36 cm) growth of Vigna radiata in the phytotoxicity assay.
    Matched MeSH terms: Water Purification/methods
  12. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour Technol, 2016 Mar;203:190-7.
    PMID: 26724550 DOI: 10.1016/j.biortech.2015.12.011
    This study demonstrated a successful operation of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) in wastewater treatment and energy recovery. The goals of this study were to investigate the effect of circuit connection, organic loading rates, and electrode spacing on the performance of wastewater treatment and bioelectricity generation. The average influent of COD, NO3(-) and NH4(+) were 624 mg/L, 142 mg/L, 40 mg/L, respectively and their removal efficiencies (1 day HRT) were 99%, 46%, and 96%, respectively. NO3(-) removal was relatively higher in the closed circuit system due to lower dissolved oxygen in the system. Despite larger electrode spacing, the voltage outputs from Anode 2 (A2) (30 cm) and Anode 3 (A3) (45 cm) were higher than from Anode 1 (A1) (15 cm) as a result of insufficient fuel supply to A1. The maximum power density and Coulombic efficiency were obtained at A2, which were 93 mW/m(3) and 1.42%, respectively.
    Matched MeSH terms: Water Purification
  13. Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, et al.
    Bioprocess Biosyst Eng, 2016 Jun;39(6):893-900.
    PMID: 26894384 DOI: 10.1007/s00449-016-1568-y
    The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m(3) with current density of 3487 mA/m(3).
    Matched MeSH terms: Water Purification
  14. Oon YL, Ong SA, Ho LN, Wong YS, Oon YS, Lehl HK, et al.
    Bioresour Technol, 2015 Jun;186:270-5.
    PMID: 25836035 DOI: 10.1016/j.biortech.2015.03.014
    An innovative design of upflow constructed wetland-microbial fuel cell (UFCW-MFC) planted with cattail was used for simultaneous wastewater treatment and electricity generation. The electrodes material employed in the study was carbon felt. The main aim of this study is to assess the performance of the UFCW coupling with MFC in term of ability to treat wastewater and the capability to generate bioelectricity. The oxidation reduction potential (ORP) and dissolved oxygen (DO) profile showed that the anaerobic and aerobic regions were well developed in the lower and upper bed, respectively, of UFCW-MFC. Biodegradation of organic matter, nitrification and denitrification was investigated and the removal efficiencies of COD, NO3(-), NH4(+) were 100%, 40%, and 91%, respectively. The maximum power density of 6.12 mW m(-2) and coulombic efficiency of 8.6% were achieved at electrode spacing of anode 1 (A1) and cathode (15 cm).
    Matched MeSH terms: Water Purification/methods*
  15. Ahmed MJ, Theydan SK
    Ecotoxicol Environ Saf, 2012 Oct;84:39-45.
    PMID: 22795888 DOI: 10.1016/j.ecoenv.2012.06.019
    Adsorption capacity of an agricultural waste, palm-tree fruit stones (date stones), for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) at different temperatures was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m2/g and 475.88 mg/g, respectively. The effects of pH (2-12), adsorbent dose (0.6-0.8 g/L) and contact time (0-150 min) on the adsorptive removal process were studied. Maximum removal percentages of 89.95% and 92.11% were achieved for Ph and PNPh, respectively. Experimental equilibrium data for adsorption of both components were analyzed by the Langmuir, Freundlich and Tempkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm equation with maximum adsorption capacities of 132.37 and 161.44 mg/g for Ph and PNPh, respectively. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models, and was found to follow closely the pseudo-second order model for both components. The calculated thermodynamic parameters, namely ΔG, ΔH, and ΔS showed that adsorption of Ph and PNPh was spontaneous and endothermic under examined conditions.
    Matched MeSH terms: Water Purification*
  16. Adam F, Muniandy L, Thankappan R
    J Colloid Interface Sci, 2013 Sep 15;406:209-16.
    PMID: 23800370 DOI: 10.1016/j.jcis.2013.05.066
    Titania and ceria incorporated rice husk silica based catalyst was synthesized via sol-gel method using CTAB and glycerol as surface directing agents at room temperature and labeled as RHS-50Ti10Ce. The catalyst was used to study the adsorption and photodegradation of methylene blue (MB) under UV irradiation. The powder XRD pattern of RHS-50Ti10Ce was much broader (2θ=25-30°) than that of the parent RHS (2θ=22°). The catalyst exhibited type IV isotherm with H3 hysteresis loop, and the TEM images showed partially ordered pore arrangements. The TGA-DTG thermograms confirmed the complete removal of the templates after calcination at 500°C. RHS-50Ti10Ce exhibited excellent adsorption capability with more than 99% removal of MB from a 40 mg L(-1) solution in just 15 min. It also decolorized an 80 mg L(-1) MB solution under UV irradiation in 210 min, which was comparable with the commercialized pure anatase TiO2.
    Matched MeSH terms: Water Purification/methods*
  17. Adira Wan Khalit WN, Tay KS
    Environ Sci Process Impacts, 2016 May 18;18(5):555-61.
    PMID: 27062128 DOI: 10.1039/c6em00017g
    Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.
    Matched MeSH terms: Water Purification/methods*
  18. Khalit WNAW, Tay KS
    Ecotoxicol Environ Saf, 2017 Nov;145:214-220.
    PMID: 28738204 DOI: 10.1016/j.ecoenv.2017.07.020
    Unmetabolized pharmaceuticals often enter the water treatment plants and exposed to various treatment processes. Among these water treatment processes, disinfection is a process which involves the application of chemical oxidation to remove pathogen. Untreated pharmaceuticals from primary and secondary treatment have the potential to be exposed to the chemical oxidation process during disinfection. This study investigated the kinetics and mechanism of the degradation of sotalol during chlorination process. Chlorination with hypochlorous acid (HOCl) as main reactive oxidant has been known as one of the most commonly used disinfection methods. The second order rate constant for the reaction between sotalol and free available chlorine (FAC) was found to decrease from 60.1 to 39.1M-1min-1 when the pH was increased from 6 to 8. This result was mainly attributed by the decreased of HOCl concentration with increasing pH. In the real water samples, the presence of the higher amount of organic content was found to reduce the efficiency of chlorination in the removal of sotalol. This result showed that sotalol competes with natural organic matter to react with HOCl during chlorination. After 24h of FAC exposure, sotalol was found to produce three stable transformation by-products. These by-products are mainly chlorinated compounds. According to the acute and chronic toxicity calculated using ECOSAR computer program, the transformation by-products are more harmful than sotalol.
    Matched MeSH terms: Water Purification/methods*
  19. Mansor NA, Tay KS
    Sci Total Environ, 2020 Apr 20;714:136745.
    PMID: 31982754 DOI: 10.1016/j.scitotenv.2020.136745
    Chlorination is a common disinfection method in water treatment. This method can be converted into an advanced oxidation process by incorporating UV irradiation during water treatment. This study investigated the degradation of hydrochlorothiazide (HCTZ) by chlorination and UV/chlorination in water. HCTZ is a diuretic medication that has been frequently detected in wastewater. For chlorination, the second-order rate constant for the reaction between HCTZ with free available chlorine was found to increase with increasing pH from 5 to 8 due to the increase of the anionic HCTZ fraction. UV/chlorination was found to be more efficient in removing HCTZ as compared with chlorination due to the presence of reactive radical species such as hydroxyl radicals. For transformation by-products, chlorination was found to produce two by-products via chlorination and hydroxylation reactions that occurred at the aromatic ring of HCTZ. For UV/chlorination, an additional by-product formed through a radical reaction at the heterocyclic moiety of HCTZ was detected. Based on the Escherichia coli inhibition study, chlorination and UV/chlorination were found to increase the toxicity of the HCTZ solution. This result indicated that even UV/chlorination showed higher effectiveness in removing HCTZ; however, it also has the potential to generate toxic by-products and effluent.
    Matched MeSH terms: Water Purification
  20. Mansor NA, Tay KS
    Environ Sci Pollut Res Int, 2017 Oct;24(28):22361-22370.
    PMID: 28801887 DOI: 10.1007/s11356-017-9892-6
    This study investigated the reaction kinetics and mechanism of the degradation of 5,5-diphenylhydantoin (DPH) during conventional chlorination and UV/chlorination. DPH is one of the antiepileptic drugs, which has frequently been detected in the aquatic environment. For chlorination, the second-order rate constant for the reaction between DPH and free active chlorine (FAC) was determined at pH 5 to 8. At pH 6 to 8, the efficiency of chlorination in the removal of DPH was found to be dominated by the reaction involving hypochlorous acid (HOCl). The result also showed that anionic species of DPH was more reactive toward FAC as compared with neutral DPH. For UV/chlorination, the effect of FAC dosage and pH on the degradation of DPH was evaluated. UV/chlorination is a more effective method for removing DPH as compared with conventional chlorination and UV irradiation. The DPH degradation rate was found to increase with increasing FAC concentration. On the other hand, the degradation of DPH was found to be more favorable under the acidic condition. Based on the identified transformation by-products, DPH was found to be degraded through the reaction at imidazolidine-2,4-dione moiety of DPH for both chlorination and UV/chlorination. Toxicity study on the chlorination and UV/chlorination-treated DPH solutions suggested that UV/chlorination is a more efficient method for reducing the toxicity of DPH.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links