Displaying publications 41 - 60 of 205 in total

Abstract:
Sort:
  1. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
    Matched MeSH terms: Water Quality*
  2. Abba SI, Pham QB, Saini G, Linh NTT, Ahmed AN, Mohajane M, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(33):41524-41539.
    PMID: 32686045 DOI: 10.1007/s11356-020-09689-x
    In recent decades, various conventional techniques have been formulated around the world to evaluate the overall water quality (WQ) at particular locations. In the present study, back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), and one multilinear regression (MLR) are considered for the prediction of water quality index (WQI) at three stations, namely Nizamuddin, Palla, and Udi (Chambal), across the Yamuna River, India. The nonlinear ensemble technique was proposed using the neural network ensemble (NNE) approach to improve the performance accuracy of the single models. The observed WQ parameters were provided by the Central Pollution Control Board (CPCB) including dissolved oxygen (DO), pH, biological oxygen demand (BOD), ammonia (NH3), temperature (T), and WQI. The performance of the models was evaluated by various statistical indices. The obtained results indicated the feasibility of the developed data intelligence models for predicting the WQI at the three stations with the superior modelling results of the NNE. The results also showed that the minimum values for root mean square (RMS) varied between 0.1213 and 0.4107, 0.003 and 0.0367, and 0.002 and 0.0272 for Nizamuddin, Palla, and Udi (Chambal), respectively. ANFIS-M3, BPNN-M4, and BPNN-M3 improved the performance with regard to an absolute error by 41%, 4%, and 3%, over other models for Nizamuddin, Palla, and Udi (Chambal) stations, respectively. The predictive comparison demonstrated that NNE proved to be effective and can therefore serve as a reliable prediction approach. The inferences of this paper would be of interest to policymakers in terms of WQ for establishing sustainable management strategies of water resources.
    Matched MeSH terms: Water Quality*
  3. Wong YJ, Shimizu Y, He K, Nik Sulaiman NM
    Environ Monit Assess, 2020 Sep 16;192(10):644.
    PMID: 32935203 DOI: 10.1007/s10661-020-08543-4
    The assessment of surface water quality is often laborious, expensive and tedious, as well as impractical, especially for the developing and middle-income countries in the ASEAN region. The application of the water quality index (WQI), which depends on several independent key parameters, has great potential and is a useful tool in this region. Therefore, this study aims to find out the spatial variability of various water quality parameters in geographical information system (GIS) environment and perform a comparative study among the ASEAN WQI systems. At present, there are four ASEAN countries which have implemented the WQI system to evaluate their surface water quality, which are (i) Own WQI system-Malaysia, Thailand and Vietnam-and (ii) Adopted WQI system: Indonesia. A spatial distribution of 12 water quality parameters in the Selangor river basin, Malaysia, was plotted and then applied into the different ASEAN WQI systems. The WQI values obtained from the different WQI systems have an appreciable difference, even for the same water samples due to the disparity in the parameter selection and the standards among them. WQI systems which consider all biophysicochemical parameters provide a consistent evaluation (Very Poor), but the system which either considers physicochemical or biochemical parameters gives a relatively lenient evaluation (Fair-Poor). The Selangor river basin is stressed and impacted by all physical, biological and chemical parameters caused by both the aridity of the climate and anthropogenic activities. Therefore, it is crucial to include all these aspects into the evaluation and corresponding actions should be taken.
    Matched MeSH terms: Water Quality*
  4. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
    Matched MeSH terms: Water Quality
  5. Prabakaran K, Eswaramoorthi S, Nagarajan R, Anandkumar A, Franco FM
    Chemosphere, 2020 Aug;252:126430.
    PMID: 32200178 DOI: 10.1016/j.chemosphere.2020.126430
    By convention, dissolved trace elements in the river water are considered to be the fraction that passes through a 0.45 μm filter. However, several researchers have considered filtration cut-off other than 0.45 μm for the separation of dissolved trace elements from particulate fraction. Recent research indicated that trace elements could exist in particulate form as colloids and natural nanoparticles. Moreover, the trace elements in the continental dust (aerosols) constitute a significant component in their geochemical cycling. Due to their high mobility, the trace elements in the micron and sub-micron scale have biogeochemical significance in the coastal zone. In this context, this study focuses on the highly mobile fraction of trace elements in particulates (<11 μm) and dissolved form in the Lower Baram River. A factor model utilizing trace elements in the dissolved and mobile phase in the particulates (<11 μm) along with water column characteristics and the partition coefficient (Kd) of the trace elements indicated a more significant role for manganese oxyhydroxides in trace element transport. Perhaps, iron oxyhydroxides play a secondary role. The factor model further illustrated the dissolution of aluminium and authigenic clay formation. Except for Fe and Al, the contamination risk of mobile trace elements in particulates (<11 μm) together with dissolved form are within the permissible limits of the Malaysian water quality standards during monsoon (MON) and postmonsoon (POM) seasons.
    Matched MeSH terms: Water Quality
  6. Abd Manan TSB, Khan T, Wan Mohtar WHM, Beddu S, Mohd Kamal NL, Yavari S, et al.
    Data Brief, 2020 Jun;30:105518.
    PMID: 32382595 DOI: 10.1016/j.dib.2020.105518
    Perak River basin is in Perak state of Peninsular Malaysia. In this research, the river stretch serves as water intake for domestic, agricultural and industrial purposes in Perak Tengah, Hilir Perak and Manjung regions. It is located in mixed use area whilst exposing the river to anthropogenic elements. The sampling locations were conducted at selected points of Perak River namely Tanjung Belanja Bridge (TBB), Water Treatment Plant Parit (WTPP), Parit Town discharge (PTD), Water Treatment Plant Senin (WTPS) and Water Treatment Plant Kepayang (WTPK). The existence of aromatic hydrocarbons in freshwater samples was pre-assessed via qualification analysis; specific ultraviolet absorbance (SUVA254) method at 254 nm of wavelength. The SUVA dataset were 48.38 L/mg-m (TBB), 50.54 L/mg-m (WTPP), 8.05 L/mg-m (PTD), 85.75 L/mg-m (WTPS) and 217.39 L/mg-m (WTPK). The SUVA254 values of fresh water at the river basin have exceeded the water quality standards value equivalent to 2.0 L/mg-m permitted by the Environmental Protection Agency of United States. The exceeding values were an indication of a large portion of aromatic compounds in the water. Qualification analyses evident the existence of water pollutants at treacherous concentrations for public health in freshwater samples of Perak River basin. Thus, this research has presented important findings towards further research and countermeasure for a better alternative of water treatment in Malaysia.
    Matched MeSH terms: Water Quality
  7. Camara M, Jamil NR, Abdullah AFB, Hashim RB, Aliyu AG
    Sci Total Environ, 2020 May 30;737:139800.
    PMID: 32526579 DOI: 10.1016/j.scitotenv.2020.139800
    The evaluation of the importance of having accurate and representative stations in a network for river water quality monitoring is always a matter of concern. The minimal budget and time demands of water quality monitoring programme may appear very attractive, especially when dealing with large-scale river watersheds. This article proposes an improved methodology for optimising water quality monitoring network for present and forthcoming monitoring of water quality under a case study of the Selangor River watershed in Malaysia, where different monitoring networks are being used by water management authorities. Knowing that the lack of financial resources in developing countries like Malaysia is one of the reasons for inadequate monitoring network density, to identify an optimised network for cost-efficiency benefits in this study, a geo-statistical technique coupled Kendall's W was first applied to analyse the performance of each monitoring station in the existing networks under the monitored water quality parameters. Second, the present and future changes in non-point pollution sources were simulated using the integrated Cellular Automata and Markov chain model (CA-Markov). Third, Station Potential Pollution Score (SPPS) determined based on Analytic Hierarchy Process (AHP) was used to weight each station under the changes of non-point pollution sources for 2015, 2024, and 2033 prior to prioritisation. Finally, according to the Kendall's W test on kriging results, the weights of non-point sources from the AHP evaluation and fuzzy membership functions, six most efficient sampling stations were identified to build a robust network for the present and future monitoring of water quality status in the Selangor River watershed. This study proposes a useful approach to the pertinent agencies and management authority concerned to establish appropriate methods for developing an efficient water quality monitoring network for tropical rivers.
    Matched MeSH terms: Water Quality
  8. Abdul Razak S, Scribner KT
    Appl Environ Microbiol, 2020 05 05;86(10).
    PMID: 32169941 DOI: 10.1128/AEM.02662-19
    Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally.IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally.
    Matched MeSH terms: Water Quality
  9. Bui DT, Khosravi K, Karimi M, Busico G, Khozani ZS, Nguyen H, et al.
    Sci Total Environ, 2020 May 01;715:136836.
    PMID: 32007881 DOI: 10.1016/j.scitotenv.2020.136836
    Groundwater resources constitute the main source of clean fresh water for domestic use and it is essential for food production in the agricultural sector. Groundwater has a vital role for water supply in the Campanian Plain in Italy and hence a future sustainability of the resource is essential for the region. In the current paper novel data mining algorithms including Gaussian Process (GP) were used in a large groundwater quality database to predict nitrate (contaminant) and strontium (potential future increasing) concentrations in groundwater. The results were compared with M5P, random forest (RF) and random tree (RT) algorithms as a benchmark to test the robustness of the modeling process. The dataset includes 246 groundwater quality samples originating from different wells, municipals and agricultural. It was divided for the modeling process into two subgroups by using the 10-fold cross validation technique including 173 samples for model building (training dataset) and 73 samples for model validation (testing dataset). Different water quality variables including T, pH, EC, HCO3-, F-, Cl-, SO42-, Na+, K+, Mg2+, and Ca2+ have been used as an input to the models. At first stage, different input combinations have been constructed based on correlation coefficient and thus the optimal combination was chosen for the modeling phase. Different quantitative criteria alongside with visual comparison approach have been used for evaluating the modeling capability. Results revealed that to obtain reliable results also variables with low correlation should be considered as an input to the models together with those variables showing high correlation coefficients. According to the model evaluation criteria, GP algorithm outperforms all the other models in predicting both nitrate and strontium concentrations followed by RF, M5P and RT, respectively. Result also revealed that model's structure together with the accuracy and structure of the data can have a relevant impact on the model's results.
    Matched MeSH terms: Water Quality
  10. Ahmad Kamal N, Muhammad NS, Abdullah J
    Environ Pollut, 2020 Apr;259:113909.
    PMID: 31927277 DOI: 10.1016/j.envpol.2020.113909
    Malaysia is a tropical country that is highly dependent on surface water for its raw water supply. Unfortunately, surface water is vulnerable to pollution, especially in developed and dense urban catchments. Therefore, in this study, a methodology was developed for an extensive temporal water quality index (WQI) and classification analysis, simulations of various pollutant discharge scenarios using QUAL2K software, and maps with NH3-N as the core pollutant using an integrated QUAL2K-GIS. It was found that most of the water quality stations are categorized as Class III (slightly polluted to polluted). These stations are surrounded by residential areas, industries, workshops, restaurants and wet markets that contribute to the poor water quality levels. Additionally, low WQI values were reported in 2010 owing to development and agricultural activities. However, the WQI values improved during the wet season. High concentrations of NH3-N were found in the basin, especially during dry weather conditions. Three scenarios were simulated, i.e. 10%, 50% and 70% of pollution discharge into Skudai river using a calibrated and validated QUAL2K model. Model performance was evaluated using the relative percentage difference. An inclusive graph showing the current conditions and pollution reduction scenarios with respect to the distance of Skudai river and its tributaries is developed to determine the WQI classification. Comprehensive water quality maps based on NH3-N as the core pollutant are developed using integrated QUAL2K-GIS to illustrate the overall condition of the Skudai river. High NH3-N in the Skudai River affects water treatment plant operations. Pollution control of more than 90% is required to improve the water quality classification to Class II. The methodology and analysis developed in this study can assist various stakeholders and authorities in identifying problematic areas and determining the required percentage of pollution reduction to improve the Skudai River water quality.
    Matched MeSH terms: Water Quality
  11. Matuzahroh N, Fitriani N, Ardiyanti PE, Kuncoro EP, Budiyanto WD, Isnadina DRM, et al.
    Heliyon, 2020 Apr;6(4):e03736.
    PMID: 32280804 DOI: 10.1016/j.heliyon.2020.e03736
    The previous research showed that slow sand filtration (SSF) can remove the total coli by approximately 99% because of the schmutzecke layer in the filter. The presented study aimed to complete the previous research on SSF, especially on the schmuztdecke layer mechanism, to remove total coli. Total coli is a parameter of water quality standard in Indonesia, and the behavior of schmutzdecke affects the total coli removal. In the present study, the raw water from Amprong River was treated using horizontal roughing filter (HRF) and SSF. The variations in SSF rate used were 0.2 and 0.4 m/h. Total coliforms were analyzed using the most probable number test, and schmutzdecke visualization was conducted through scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The best coliform concentration in water treated by the combination of HRF and SSF was 4,386 colonies per 100 mL of sample using the filtration rate of 0.2 m/h, and its removal efficiency was 99.60%. However, the quality of water treated by the combination of HRF and SSF did not meet the drinking water quality standard because the removal of total coli must be 100%. The SEM-EDX visualization results in schmutzdecke showed that the average bacteria in the schmutzdecke layer were small, white, opaque, and circular, with entire edge and flat elevation. The Gram test results showed that the schmutzdecke bacteria consisted of Gram-positive and Gram-negative bacteria with basil as the common cell form.
    Matched MeSH terms: Water Quality
  12. Ng CK, Ooi PA, Wong WL, Khoo G
    J Environ Manage, 2020 Feb 01;255:109829.
    PMID: 31783208 DOI: 10.1016/j.jenvman.2019.109829
    Anthropogenic pressures are causing substantial degradation to the freshwater ecosystems globally and Malaysia has not escaped such a bleak scenario. Prompted by the predicament, this study's objective was to pioneer a river assessment system that can be readily adopted to monitor, manage and drive improvement in a wholesome manner. Three sets of a priori metrics were selected to form the Ichthyofaunal Quality Index (IQI: biological), Water Quality Index (WQI: chemical) and River Physical Quality Index (RPQI: physical). These indices were further integrated on equal weighting to construct a novel Malaysian River Integrity Index (MyRII). To test its robustness, the MyRII protocol was field tested in four eco-hydrological zones located in the Kampar River water basin for 18 months to reveal its strengths, weaknesses, and establish the "excellent", "good", "average", "poor" and "impaired" thresholds based on the "best performer" reference site in an empirical manner. The resultant MyRII showed a clear trend that corresponded with different levels of river impairment. Test site zone A which was a reference site with minimal disturbance achieved the highest MyRII (88.95 ± 4.29), followed by partially disturbed zone B (61.95 ± 5.90) and heavily disturbed zone C (50.00 ± 4.29). However, the MyRII in zone D (59.9 ± 6.39), which was a heavily disturbed wetland that was disjointed from the river, did not conform to such trend. Also unveiled and recognized, however, are some unexpected nuances, limitations and challenges that emerged from this study. These are critically discussed as precautions when interpreting and implementing the MyRII protocol. This study adds to the mounting body of evidence that water resource stakeholders and policymakers must look at the big picture and adopt the "balanced ecosystem" mind-set when assessing, restoring and managing the rivers as a freshwater resource.
    Matched MeSH terms: Water Quality
  13. Lim, Leong Seng, Isabella Ebi, Liew, Kit Shing, Yap, Tzuen Kiat, Tan, Nai Han
    MyJurnal
    Tieshangang Bay in the Beibu Gulf, Guangxi of China, is a strategic location for pearl farming. Although water pollution has been reported in this bay but the general health of the pearl oyster, Pinctada fucata martensii, farmed there has never been assessed. The present study examined the condition of P. fucata martensii farmed in the Tieshangang Bay by analyzing its length-weight relationship (LWR) and relative condition factor (RCF). A total of 111 specimens were sampled for measuring their shell height and total weight for determining the LWR and RCF. The coefficient of correlation of the LWR was high (R2 = 0.93), significant at 0.01 level. Negative allometric growth (b = 2.7048) was observed. However, P. fucata martensii achieved the expected growth in terms of weight, as determined through the RCF (mean 1.13). Negative allometric growth is commonly reported on the wild Pinctada spp. collected from different regions. Apparently, the water pollution in the Tieshangang Bay did not compromise the general health of the pearl oyster cultured there. Nevertheless, further study on the farm’s surrounding water quality and plankton availability is necessary to investigate the interaction between the growth of the oyster and its culture environment. In conclusion, the P. fucata martensii farmed in the Tieshangang Bay was considered healthy and the bay is still suitable for pearl oyster farming.
    Matched MeSH terms: Water Quality
  14. Siti Zulfa Zaidon, Yu Bin Ho, Zailina Hashim, Nazamid Saari, Sarva Mangala Praveena
    MyJurnal
    Introduction: Pesticides may influence the physicochemical properties of soil and the water quality parameters, which is vital in maintaining soil fertility and producing high quality crops. Objective: This study aims to determine the relationship between the concentration of pesticides, the physicochemical properties of the paddy soil samples and the water quality parameters of paddy water samples. Methods: A total of 72 soil and 72 water samples were collected in Tanjung Karang, Malaysia. The paddy soil and water were extracted using Quick, Easy, Cheap, Efficient, Rugged and Safe (QuEChERS) and solid phase extraction (SPE) techniques respectively. The concentrations of pesti- cides were analysed in ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The relationship of the concentration of target pesticides and the paddy soil and water physicochemical properties were studied using Spearman correlation. Results: In paddy soil, the concentration of propiconazole shows moderate positive correlation with manganese (Mn) (r = 0.587) (p 0.01). Meanwhile buprofezin-total organic carbon (TOC) (r = -0.55) (p 0.01), imidacloprid-cation exchange capacity (CEC) (r = -0.519) (p 0.01), pymetrozine-sodium (Na) (r = -0.588) (p 0.01), and trifloxystrobin-calcium (Ca) (r = 0.566) (p 0.01) showed moderate negative correlation. Whereas in water, trifloxystrobin showed significant positive correlation with turbidity (r = 0.718) (p 0.01) and te- buconazole showed negative correlation to dissolved oxygen (DO) (r = 0.634) (p 0.01). Conclusion: The presence of pesticides in paddy field may influence the soil and water quality, thus regular monitoring of pesticides usage and nutrient management in soil is deemed important.
    Matched MeSH terms: Water Quality
  15. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Water Quality
  16. Mohd Nasir FA, Praveena SM, Aris AZ
    Ecotoxicol Environ Saf, 2019 Dec 15;185:109681.
    PMID: 31561079 DOI: 10.1016/j.ecoenv.2019.109681
    Studies on the occurrence of pharmaceutical residues in drinking water were conducted especially in developed countries. However, limited studies reported the occurrence of pharmaceutical residues in developing countries. Thus, this study is conducted to fill the knowledge gap of pharmaceutical residue occurrences in developing countries, particularly in Malaysia, along with public awareness level and its potential human health risk. This study investigates public awareness level of drinking water quality and pharmaceutical handling, the occurrence of nine pharmaceutical residues (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and potential human health risks in drinking water from Kajang (Malaysia) using commercially competitive enzyme-linked immunosorbent assay kits. In general, the public awareness level of Kajang population showed poor knowledge (82.02%), and less positive attitude (98.88%) with a good practice score (57.3%). Ciprofloxacin was detected at the highest concentration (0.667 ng/L) while amoxicillin was at the lowest concentration (0.001 ng/L) in drinking water from Kajang (Malaysia). Nevertheless, all the reported occurrences were lower than previous studies conducted elsewhere. There was no appreciable potential human health risk for all the pharmaceutical residues as the risk quotient (RQ) values were less than 1 (RQ water risk management and regulation in Malaysia.
    Matched MeSH terms: Water Quality*
  17. Camara M, Jamil NR, Abdullah AFB, Hashim RB
    Environ Monit Assess, 2019 Nov 08;191(12):729.
    PMID: 31705319 DOI: 10.1007/s10661-019-7906-1
    Managers of water quality and water monitoring programs are often faced with constraints in terms of budget, time, and laboratory capacity for sample analysis. In such situation, the ideal solution is to reduce the number of sampling sites and/or monitored variables. In this case, selecting appropriate monitoring sites is a challenge. To overcome this problem, this study was conducted to statistically assess and identify the appropriate sampling stations of monitoring network under the monitored parameters. To achieve this goal, two sets of water quality data acquired from two different monitoring networks were used. The hierarchical agglomerative cluster analysis (HACA) were used to group stations with similar characteristics in the networks, the time series analysis was then performed to observe the temporal variation of water quality within the station clusters, and the geo-statistical analysis associated Kendall's coefficient of concordance were finally applied to identify the most appropriate and least appropriate sampling stations. Based on the overall result, five stations were identified in the networks that contribute the most to the knowledge of water quality status of the entire river. In addition, five stations deemed less important were identified and could therefore be considered as redundant in the network. This result demonstrated that geo-statistical technique coupled with Kendall's coefficient of concordance can be a reliable method for water resource managers to identify appropriate sampling sites in a river monitoring network.
    Matched MeSH terms: Water Quality
  18. Syafaat MN, Muhammad T, Abol-Munafi AB, Ikhwanuddin M
    Data Brief, 2019 Oct;26:104438.
    PMID: 31528675 DOI: 10.1016/j.dib.2019.104438
    Population density, growth, survival, water quality and larval stage index of purple mud crab, Scylla tranquebarica at different feeding regimes and the data on ingestion rate of chosen microalgae, survival and larval development of blue swimming crab, Portunus pelagicus are presented. A twenty days of S. tranquebarica larval culture from zoeal 1 until megalopa stage under two different feeding regimes of A) Rotifer, Artemia nauplii and shrimp meat and B) Rotifer, Artemia nauplii and artificial feed is shared. A method on investigation of individual larvae of P. pelagicus capability to catch four different types of microalgae within 24 h is also shared. Direct eye observation, data collected through the larval rearing culture of S. tranquebarica and further statistical analysis were done daily until the crabs reached the megalopa stage. The result obtained from the optimum density of selected microalgae fed by individual larvae of P. pelagicus will be combined with the highest survival rate and larval stage index to develop feeding schedule for crab larvae P. pelagicus. This dataset has not previously been published and is of great potential for further comparison with other - and future investigation of various feeding regimes affected the crab culture. The collected information could be used as a standard feeding regime for nursery and hatchery seed production of others portunids crabs. The data described in this article are available as a supplementary file to this article.
    Matched MeSH terms: Water Quality
  19. Daramola J, M Ekhwan T, Adepehin EJ, Mokhtar J, Lam KC, Er AC
    Heliyon, 2019 Jul;5(7):e02121.
    PMID: 31384682 DOI: 10.1016/j.heliyon.2019.e02121
    Water constitutes a major environmental and public health concerns worldwide. A large proportion of global water consumption is sourced from surface water. The dependency level on surface water is higher in developing countries, especially in rural-to-semi-urban areas, where subsurface water is not accessible. Presented in this paper is a spatiotemporal and hydrochemical quality assessment of the spring-originated Landzun Stream in Bida, Nigeria; which is usually consumed in its untreated state. Water samples were systematically collected in eighteen locations along the stream channel in both rainy and dry seasons at an equidistance interval of 500m. On-site and laboratory measurement of important physical and hydrochemical parameters were carried out using standard procedures. Water temperature in the rainy season (34-37 °C) slightly exceeds measured values in the dry season (29-33 °C). 72.22% (rainy) and 83.33% (dry) of collected samples did not meet the odourless requirement for drinking water. Similarly, estimated percentages of 66.67 and 94.44 of collected samples in rainy and dry seasons respectively have a taste. Contrary to data in the rainy season, 89%, 11%, 67% and 56% of the dry season's samples were enriched in magnesium (Mg), lead (Pb), potassium (K) and iron (Fe) respectively above the 2018 World Health Organisation guidelines for drinking water. This study further established that seasonal variation plays a major role in altering the aesthetic surface water quality. The intake of untreated surface water is a vehicle for potential water-borne diseases and allergies, hence alternative sources of drinking water for the populace dependent on the Landzun Stream is recommended to reduce risks and possible dangers of consuming the stream water.
    Matched MeSH terms: Water Quality
  20. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
    Matched MeSH terms: Water Quality
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links