Displaying publications 41 - 60 of 161 in total

Abstract:
Sort:
  1. Hang CY, Moriya S, Ogawa S, Parhar IS
    PLoS One, 2016;11(10):e0165535.
    PMID: 27792783 DOI: 10.1371/journal.pone.0165535
    Non-rod non-cone photopigments in the eyes and the brain can directly mediate non-visual functions of light in non-mammals. This was supported by our recent findings on vertebrate ancient long (VAL)-opsin photopigments encoded by the val-opsinA (valopa) and val-opsinB (valopb) genes in zebrafish. However, the physiological functions of valop isoforms remain unknown. Here, we generated valop-mutant zebrafish using CRISPR/Cas genome editing, and examined the phenotypes of loss-of-function mutants. F0 mosaic mutations and germline transmission were confirmed via targeted insertions and/or deletions in the valopa or valopb gene in F1 mutants. Based on in silico analysis, frameshift mutations converted VAL-opsin proteins to non-functional truncated forms with pre-mature stop codons. Most F1 eggs or embryos from F0 female valopa/b mutants showed either no or only partial chorion elevation, and the eggs or embryos died within 26 hour-post-fertilization. However, most F1 embryos from F0 male valopa mutant developed but hatched late compared to wild-type embryos, which hatched at 4 day-post-fertilization. Late-hatched F1 offspring included wild-type and mutants, indicating the parental effects of valop knockout. This study shows valop gene knockout affects chorion formation and embryonic hatching in the zebrafish.
    Matched MeSH terms: Zebrafish/embryology*; Zebrafish/genetics*
  2. Hashiguchi Y, Zakaria MR, Toshinari M, Mohd Yusoff MZ, Shirai Y, Hassan MA
    Environ Pollut, 2021 May 15;277:116780.
    PMID: 33640825 DOI: 10.1016/j.envpol.2021.116780
    Most palm oil mills adopted conventional ponding system, including anaerobic, aerobic, facultative and algae ponds, for the treatment of palm oil mill effluent (POME). Only a few mills installed a bio-polishing plant to treat POME further before its final discharge. The present study aims to determine the quality and toxicity levels of POME final discharge from three different mills by using conventional chemical analyses and fish (Danio rerio) embryo toxicity (FET) test. The effluent derived from mill A which installed with a bio-polishing plant had lower values of BOD, COD and TSS at 45 mg/L, 104 mg/L, and 27 mg/L, respectively. Only mill A nearly met the industrial effluent discharge standard for BOD. In FET test, effluent from mill A recorded low lethality and most of the embryos were malformed after hatching (half-maximal effective concentration (EC50) = 20%). The highest toxicity was observed from the effluent of mill B and all embryos were coagulated after 24 h in samples greater than 75% of effluent (38% of half-maximal lethal concentration (LC50) at 96 h). The embryos in the effluent from mill C recorded high mortality after hatching, and the survivors were malformed after 96 h exposure (LC50 = 26%). Elemental analysis of POME final discharge samples showed Cu, Zn, and Fe concentrations were in the range of 0.10-0.32 mg/L, 0.01-0.99 mg/L, and 0.94-4.54 mg/L, respectively and all values were below the effluent permissible discharge limits. However, the present study found these metals inhibited D. rerio embryonic development at 0.12 mg/L of Cu, and 4.9 mg/L of Fe for 96 h-EC50. The present study found that bio-polishing plant installed in mill A effectively removing pollutants especially BOD and the FET test was a useful method to monitor quality and toxicity of the POME final discharge samples.
    Matched MeSH terms: Zebrafish*
  3. Hayati F, Chabib L, Fauzi IS, Awaluddin R, Sumayya, Faizah WS, et al.
    J Pharm Bioallied Sci, 2020 10 08;12(4):457-461.
    PMID: 33679093 DOI: 10.4103/jpbs.JPBS_297_19
    Introduction: Pegagan is a traditional medicinal plant with three major bioactive properties, triterpenoid, steroids, and saponin. It has the properties of antioxidant, antistress, and wound healing. Pegagan extract is prepared in self-nanoemulsifying drug delivery systems (SNEDDS) to overcome the problem of low water-solubility level.

    Objectives: This study aimed to observe the effect of pegagan ethanolic extract SNEDDS on the development of zebrafish embryos.

    Materials and Methods: This study used 12 sets of zebrafish embryos presented in five sets of extract SNEDDS with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, five sets of SNEDDS without extract with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, a set of positive control (3.4-DCA 4 mg/L) with one control set (diluted with water), and a negative control (SNEDDS without extract). The procedure was conducted for 96 h with observations every 24 h. The parameters observed were embryonic coagulation, formation of somites, detachment of tail bud from the yolk, and abnormality of embryo.

    Results: The results showed that in 96 h the 20ppm concentration caused 100% mortality. Embryo abnormality appeared as coagulation of embryo, somite malformation, and abnormal tail.

    Discussion: There is a correlation between the concentration of SNEDDS and the incidence of embryo coagulation. The malformation in the group of pegagan extract SNEDDS is characterized by cardiac edema, somite malformation, and abnormal tail.

    Conclusion: Pegagan ethanolic extract SNEDDS of 20ppm can inhibit the development of zebrafish embryos.

    Matched MeSH terms: Zebrafish
  4. Ho SY, Goh CW, Gan JY, Lee YS, Lam MK, Hong N, et al.
    Zebrafish, 2014 Oct;11(5):407-20.
    PMID: 24967707 DOI: 10.1089/zeb.2013.0879
    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.
    Matched MeSH terms: Zebrafish/embryology*
  5. Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH
    Biomed Res Int, 2016;2016:9732780.
    PMID: 27556045 DOI: 10.1155/2016/9732780
    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
    Matched MeSH terms: Zebrafish/genetics*
  6. Huang L, Qi W, Zuo Y, Alias SA, Xu W
    Dev Comp Immunol, 2020 12;113:103779.
    PMID: 32735958 DOI: 10.1016/j.dci.2020.103779
    The present study reported the first pathogenic Aeromonas salmonicida (SRW-OG1) isolated from the warm water fish orange-spotted grouper (Epinephelus coioides), and investigated the function of Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor which has been recently found to be closely associated with immune response in mammals and E. coioides. Our results showed that AhR was activated by an unknown ligand in the spleen, intestine and macrophages. Meanwhile, ahr1a and ahr1b were significantly increased in the spleen, intestine and macrophages, whereas ahr2 was only increased in the intestine, which indicated that the contribution of AhR2 to the immune response may be less than that of AhR1a and AhR1b. Some key genes involved in the macrophage inflammatory response, bacterial recognition, and intestinal immunity were significantly up-regulated in the SRW-OG1 infected E. coioides. Nevertheless, declining macrophage ROS production and down-regulation of related genes were also observed, suggesting that SRW-OG1 utilized its virulence mechanisms to prevent macrophage ROS production. Furthermore, AhR inhibitor 3', 4'-DMF and the silence of ahr1a or ahr1b significantly rescued the increased IL-1β and IL-8 induced by SRW-OG1 infection, which proved that the induction of IL-1β and IL-8 in E. coioides macrophages was mediated by AhR. However, BPI/LBP, ROS production and related genes were not affected by AhR. The survival rate and immune escape rate of SRW-OG1 in the ahr1a/ahr1b knocked-down and 3', 4'-DMF treated macrophages were significantly increased compared with those in wild type macrophages. Taken together, it was preliminarily confirmed that ahr1a and ahr1b played an important role in the immune response against A. salmonicida SRW-OG1.
    Matched MeSH terms: Zebrafish Proteins/genetics; Zebrafish Proteins/metabolism*
  7. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: Zebrafish
  8. Ikram Ismail, Siti-Ariza Aripin
    MyJurnal
    Danio rerio or commonly known as zebrafish are a very popular fish among scientists and also a well-known vertebrate model species widely used in research. Zebrafish, are also a popular species among aquarists and have been put in aquariums all around the world as ornamental fish. The acid rain phenomenon has lowered the pH level of the wild habitat of zebrafish by shifting it to a more acidic pH level. This study was carried out to observe the effect of low pH level on the reproductive performance of zebrafish. The zebrafish were quarantined for a week to make sure they were healthy to be used in the experiment. The zebrafish were reared continuously for 14 days in three different pH treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8)). T3 (pH 6-8) was used as the control treatment. Hydrochloric acid (HCl) was used to control the pH level of treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8) with three replicates of each treatment. The male chasing female frequency was significant (p: 0.0001) and the data showed the highest frequency (2568.000±140.6272) at treatment 3 (pH 6-8). For the spawning frequency of zebrafish, treatment 3 (pH 6-8) showed the highest value (4.000±0.5774) followed by treatment 2 and treatment 1 and the data was significant (p: 0.0004). The fertilisation rate of the zebrafish was significant (p: 0.0001) and the highest was shown at T2 (pH 4-6) with 89.8018±0.3782, followed by T3 and treatment T1. For the hatching rate of the zebrafish, the data collected were significant (p: 0.0002) and the highest value of 2.9350±0.4070 was shown at T3 (pH 6-8), followed by T2 (pH 4-6) and T1 (pH 2-4). The overall result showed that pH 2-4 had the worst effect on the reproductive performance of zebrafish. Therefore, low pH has a significant effect on reducing the reproductive performance of zebrafish. The local fish population can be affected by the decrease of pH level due to acid rains and chemical waste pollution.
    Matched MeSH terms: Zebrafish
  9. Iman V, Mohan S, Abdelwahab SI, Karimian H, Nordin N, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:103-121.
    PMID: 28096658 DOI: 10.2147/DDDT.S115135
    Therapy that directly targets apoptosis and/or inflammation could be highly effective for the treatment of cancer. Murraya koenigii is an edible herb that has been traditionally used for cancer treatment as well as inflammation. Here, we describe that girinimbine, a carbazole alkaloid isolated from M. koenigii, induced apoptosis and inhibited inflammation in vitro as well as in vivo. Induction of apoptosis in human colon cancer cells (HT-29) by girinimbine revealed decreased cell viability in HT-29, whereas there was no cytotoxic effect on normal colon cells. Changes in mitochondrial membrane potential, nuclear condensation, cell permeability, and cytochrome c translocation in girinimbine-treated HT-29 cells demonstrated involvement of mitochondria in apoptosis. Early-phase apoptosis was shown in both acridine orange/propidium iodide and annexin V results. Girinimbine treatment also resulted in an induction of G0/G1 phase arrest which was further corroborated with the upregulation of two cyclin-dependent kinase proteins, p21 and p27. Girinimbine treatment activated apoptosis through the intrinsic pathway by activation of caspases 3 and 9 as well as cleaved caspases 3 and 9 which ended by triggering the execution pathway. Moreover, apoptosis was confirmed by downregulation of Bcl-2 and upregulation of Bax in girinimbine-treated cells. In addition, the key tumor suppressor protein, p53, was seen to be considerably upregulated upon girinimbine treatment. Induction of apoptosis by girinimbine was also evidenced in vivo in zebrafish embryos, with results demonstrating significant distribution of apoptotic cells in embryos after a 24-hour treatment period. Meanwhile, anti-inflammatory action was evidenced by the significant dose-dependent girinimbine inhibition of nitric oxide production in lipopolysaccharide/interferon-gamma-induced cells along with significant inhibition of nuclear factor-kappa B translocation from the cytoplasm to nucleus in stimulated RAW 264.7 cells. Girinimbine was also shown to have considerable antioxidant activity whereby 20 μg/mL of girinimbine was equivalent to 82.17±1.88 μM of Trolox. In mice with carrageenan-induced peritonitis, oral pretreatment with girinimbine helped limit total leukocyte migration (mainly of neutrophils), and reduced pro-inflammatory cytokine levels (interleukin-1beta and tumor necrosis factor-alpha) in the peritoneal fluid. These findings strongly suggest that girinimbine could act as a chemopreventive and/or chemotherapeutic agent by inducing apoptosis while suppressing inflammation. There is a potential for girinimbine to be further investigated for its applicability in treating early stages of cancer.
    Matched MeSH terms: Zebrafish/embryology
  10. Ishak SD, Tan SH, Khong HK, Jaya-Ram A, Enyu YL, Kuah MK, et al.
    PMID: 19025614 DOI: 10.1186/1477-7827-6-56
    Although unsaturated fatty acids such as eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (ARA, C20:4n-6), collectively known as the highly unsaturated fatty acids (HUFA), play pivotal roles in vertebrate reproduction, very little is known about their synthesis in the ovary. The zebrafish (Danio rerio) display capability to synthesize all three HUFA via pathways involving desaturation and elongation of two precursors, the linoleic acid (LA, C18:2n-6) and linolenic acid (LNA, C18:3n-3). As a prerequisite to gain full understanding on the importance and regulation of ovarian HUFA synthesis, we described here the mRNA expression pattern of two enzymes; desaturase (fadsd6) and elongase (elovl5), involved in HUFA biosynthesis pathway, in different zebrafish ovarian follicle stages. Concurrently, the fatty acid profile of each follicle stage was also analyzed.
    Matched MeSH terms: Zebrafish
  11. Issac PK, Lite C, Guru A, Velayutham M, Kuppusamy G, Saraswathi NT, et al.
    Fish Physiol Biochem, 2021 Apr;47(2):293-311.
    PMID: 33394283 DOI: 10.1007/s10695-020-00912-7
    This study reports the antioxidant property and molecular mechanism of a tryptophan-tagged peptide derived from a teleost fish Channa striatus of serine threonine-protein kinase (STPK). The peptide was tagged with tryptophan to enhance the antioxidant property of STPK and named as IW13. The antioxidant activity of IW13 peptide was investigated using in vitro methods such as DPPH, ABTS, superoxide anion radical scavenging and hydrogen peroxide scavenging assay. Furthermore, to investigate the toxicity and dose response of IW13 peptide on antioxidant defence in vitro, L6 myotubes were induced with generic oxidative stress due to exposure of hydrogen peroxide (H2O2). IW13 peptide exposure was found to be non-cytotoxic to L6 cells in the tested concentration (10, 20, 30, 40 and 50 μM). Also, the pre-treatment of IW13 peptide decreased the lipid peroxidation level and increased glutathione enzyme activity. IW13 peptide treatment upregulated the antioxidant enzyme genes: GPx (glutathione peroxidase), GST (glutathione S transferase) and GCS (glutamine cysteine synthase), in vitro in L6 myotubes and in vivo in zebrafish larvae against the H2O2-induced oxidative stress. The results demonstrated that IW13 renders protection against the H2O2-induced oxidative stress through a cellular antioxidant defence mechanism by upregulating the gene expression, thus enhancing the antioxidant activity in the cellular or organismal level. The findings exhibited that the tryptophan-tagged IW13 peptide from STPK of C. striatus could be a promising candidate for the treatment of oxidative stress-associated diseases.
    Matched MeSH terms: Zebrafish
  12. Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, et al.
    Sci Total Environ, 2021 Jul 01;776:145963.
    PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963
    Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.
    Matched MeSH terms: Zebrafish*
  13. Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF
    Front Pharmacol, 2018;9:655.
    PMID: 29997502 DOI: 10.3389/fphar.2018.00655
    Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
    Matched MeSH terms: Zebrafish
  14. Juvale IIA, Che Has AT
    J Mol Neurosci, 2021 Jul;71(7):1338-1355.
    PMID: 33774758 DOI: 10.1007/s12031-021-01825-7
    Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
    Matched MeSH terms: Zebrafish
  15. KIRK R
    J Trop Med Hyg, 1959 Jan;62(1):10-7.
    PMID: 13621483
    Matched MeSH terms: Zebrafish*
  16. Karami A, Groman DB, Wilson SP, Ismail P, Neela VK
    Environ Pollut, 2017 Apr;223:466-475.
    PMID: 28129952 DOI: 10.1016/j.envpol.2017.01.047
    There are serious concerns over the adverse impacts of microplastics (MPs) on living organisms. The main objective of this study was to test the effects of MPs on the total length, weight, condition factor (CF), transcriptional level of antioxidant, anti and pro-apoptotic, and neurotransmitter genes, and the histopathology of the gill, liver, brain, kidney, and intestine in the larvae of zebrafish (Danio rerio). Fish were exposed to one of three levels of pristine low-density polyethylene (LDPE) fragments (5, 50, or 500 μg/L) for 10 or 20 days. No significant changes were observed in any of the selected biomarkers across MP concentrations at days 10 or 20. The expression of casp9 (caspase 9, apoptosis-related cysteine protease), casp3a (caspase 3, apoptosis-related cysteine protease a) and cat (catalase), however, were significantly lower in the larvae sampled at day 20 than day 10. We provide evidence that virgin short-term exposure to LDPE fragments has minimal impact on biomarker responses in D. rerio larvae.
    Matched MeSH terms: Zebrafish/anatomy & histology; Zebrafish/genetics*; Zebrafish/growth & development
  17. Khan AYF, Ahmed QU, Narayanamurthy V, Razali S, Asuhaimi FA, Saleh MSM, et al.
    Biomed Pharmacother, 2019 Jun;114:108841.
    PMID: 30981106 DOI: 10.1016/j.biopha.2019.108841
    Porcupine bezoar (PB) is a calcified undigested material generally found in porcupine's (Hystrix brachyura) gastrointestinal tract. The bezoar is traditionally used in South East Asia and Europe for the treatment of cancer, poisoning, dengue, typhoid, etc. However, limited scientific studies have been performed to verify its anticancer potential to substantiate its traditional claims in the treatment of cancers. Hence, this study was aimed at investigating the in vitro and in vivo anticancer properties of two grassy PB aqueous extract (PB-A and PB-B) using A375 cancer cell line and zebrafish model, respectively. This paper presents the first report on in vitro A375 cell viability assay, apoptosis assay, cell cycle arrest assay, migration assay, invasion assay, qPCR experimental assay and in vivo anti-angiogenesis assay using the grassy PBs. Experimental findings revealed IC50 value are 26.59 ± 1.37 μg/mL and 30.12 ± 3.25 μg/mL for PB-A and PB-B respectively. PBs showed anti-proliferative activity with no significant cytotoxic effect on normal human dermal fibroblast (NHDF). PBs were also found to induce apoptosis via intrinsic pathway and arrest cell cycle at G2/M phase. Additionally, the findings indicated its ability to debilitate migration and invasion of A375 cells. Further evaluation using embryo zebrafish model revealed LC50 = 450.0 ± 2.50 μg/mL and 58.7 ± 5.0 μg/mL for PB-A and PB-B which also exerted anti-angiogenesis effect in zebrafish. Moreover, stearic acid, ursodeoxycholic acid and pregnenolone were identified as possible metabolites that might contribute to the anticancer effect of the both PBs. Overall, this study demonstrated that PB-A and PB-B possess potential in vitro and in vivo anticancer effects which are elicited through selective cytotoxic effect, induction of apoptosis, inhibition of migration and invasion and anti-angiogenesis. This study provides scientific evidence that the porcupine bezoar do possess anti-cancer efficacy and further justifies its traditional utility. However, more experiments with higher vertebrae models are still warranted to validate its traditional claims as an anticancer agent.
    Matched MeSH terms: Zebrafish
  18. Khan MI, Mubashir M, Zaini D, Mahnashi MH, Alyami BA, Alqarni AO, et al.
    J Hazard Mater, 2021 08 05;415:125364.
    PMID: 33740721 DOI: 10.1016/j.jhazmat.2021.125364
    In the present research work, a comprehensive tool for cumulative ecotoxicological impact assessment of ionic liquids (ILs) to aquatic life has been constructed. Using the probabilistic tool, impact of individual ILs to a group of aquatic species is assessed by chemical toxicity distributions (CTDs). The impact of group of ILs to individual aquatic species is assessed by species sensitivity distributions (SSDs). Acute toxicity data of imidazolium ILs with chloride (Cl-), bromide (Br-), tetrafluoroborate (BF4-), and hexafluorophosphate (PF6-) anions are used in CTD and SSD. Allowable concentrations for a group of Imidazolium ILs with the same mode of action (SMOA) to five aquatic species; Daphnia magna, Vibrio fischeri, Algae, Zebrafish, and Escherichia coli are estimated by CTDs. It has been concluded that 1-Butyl-3-methylimidazolium chloride (BMIMCl) possess the lowest risk at an acceptable risk value of 750 × 10-5 mmol/L which is 12% less than that of OMIMCl. Furthermore, the sensitivities towards the aquatic species reveal that from the studied ILs, BMIMBF4 with an acceptable risk value of 3200 × 10-5 mmol/L is the most suitable IL towards the selected aquatic species. Hence, current work provides cumulative allowable concentrations and acceptable risk values for ILs which release to aquatic compartment of ecosystem.
    Matched MeSH terms: Zebrafish
  19. Khor BS, Jamil MF, Adenan MI, Shu-Chien AC
    PLoS One, 2011;6(12):e28340.
    PMID: 22205946 DOI: 10.1371/journal.pone.0028340
    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway.
    Matched MeSH terms: Zebrafish*
  20. Khor ES, Noor SM, Wong PF
    Life Sci, 2016 Apr 1;150:67-75.
    PMID: 26916825 DOI: 10.1016/j.lfs.2016.02.076
    MicroRNAs (miRNAs) are vital in modulating lifespan and various biological processes including vascular function. The pivotal roles of mammalian target of rapamycin (mTOR) in regulating senescence and angiogenesis have been extensively described. However, the roles of its orthologue, zebrafish target of rapamycin (zTOR) in senescence and angiogenesis remain to be unravelled. In the present study, we aimed to investigate the role of zTOR and identify miRNAs associated with senescence and angiogenesis.
    Matched MeSH terms: Zebrafish
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links