With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.
Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.
The effects of dietary supplementation of different parts of Andrographis paniculata on fatty acids, lipid oxidation, microbiota and quality attributes of Longissimus thoracis et lumborum (LTL) muscle in goats were assessed. Twenty four, entire Boer bucks (4 months old; 20.18 ± 0.19 kg BW) were randomly allotted to either a basal diet without additive (AP0), a basal diet + 1.5% Andrographis paniculata leaves (APL) or a basal diet + 1.5% Andrographis paniculata whole plant (APW). The bucks were fed the diets for 100 d and slaughtered. The LTL muscle was subjected to a 7 d chill storage. The AP0 meat had higher (p .05) on muscle glycogen, pH, drip loss, chemical composition and lactic acid bacteria count. Cooking loss, shear force, and TBARS values were lower (p
The dichloromethane (DCM) extract of Andrographis paniculata Nees was tested for cardiovascular activity. The extract significantly reduced coronary perfusion pressure by up to 24.5 ± 3.0 mm Hg at a 3 mg dose and also reduced heart rate by up to 49.5 ± 11.4 beats/minute at this dose. Five labdane diterpenes, 14-deoxy-12-hydroxyandrographolide (1), 14-deoxy-11,12-didehydroandrographolide (2), 14-deoxyandrographolide (3), andrographolide (4), and neoandrographolide (5), were isolated from the aerial parts of this medicinal plant. Bioassay-guided studies using animal model showed that compounds, (2) and (3) were responsible for the coronary vasodilatation. This study also showed that andrographolide (4), the major labdane diterpene in this plant, has minimal effects on the heart.
Andrographis paniculata (Burm.f.) Nees is a popular medicinal plant and its components are used in various traditional product preparations. However, its herb-drug interactions risks remain unclear. This review specifically discusses the various published studies carried out to evaluate the effects of Andrographis paniculata (Burm.f.) Nees plant extracts and diterpenoids on the CYP450 metabolic enzyme and if the plant components pose a possible herb-drug interaction risk. Unfortunately, the current data are insufficient to indicate if the extracts or diterpenoids can be labeled as in vitro CYP1A2, CYP2C9 or CYP3A4 inhibitors. A complete CYP inhibition assay utilizing human liver microsomes and the derivation of relevant parameters to predict herb-drug interaction risks may be necessary for these isoforms. However, based on the current studies, none of the extracts and diterpenoids exhibited CYP450 induction activity in human hepatocytes or human-derived cell lines. It is crucial that a well-defined experimental design is needed to make a meaningful herb-drug interaction prediction.
Andrographolide (AG) is one of the most potent labdane diterpenoid-type free radical scavengers available from plant sources. The compound is the principal bioactive component in Andrographis paniculata leaf extracts, and is responsible for anti-inflammatory, anticancer, and immunomodulatory activity. The application of AG in therapeutics, however, is severely constrained, due to its low aqueous solubility, short biological half-life, and poor cellular permeability. Engineered nanoparticles in biodegradable polymer systems were therefore conceived as one solution to aid in further drug-like applications of AG. In this study, a cationic modified poly(lactic-co-glycolic) acid nanosystem was applied for evaluation against experimental mouse hepatotoxic conditions. Biopolymeric nanoparticles of hydrodynamic size of 229.7 ± 17.17 nm and ζ-potential +34.4 ± 1.87 mV facilitated marked restoration in liver functions and oxidative stress markers. Superior dissolution for bioactive AG, hepatic residence, and favorable cytokine regulation in the liver tissues are some of the factors responsible for the newer nanosystem-assisted rapid recovery.
Dengue fever regardless of its serotypes has been the most prevalent arthropod-borne viral diseases among the world population. The development of a dengue vaccine is complicated by the antibody-dependent enhancement effect. Thus, the development of a plant-based antiviral preparation promises a more potential alternative in combating dengue disease.
We investigated the effects of Andrographis paniculata (AP) extracts and andrographolide on the catalytic activity of three human cDNA-expressed cytochrome P450 enzymes: CYP2C9, CYP2D6 and CYP3A4. In vitro probe-based high performance liquid chromatography assays were developed to determine CYP2C9-dependent tolbutamide methylhydroxylation, CYP2D6-dependent dextromethorphan O-demethylation and CYP3A4-dependent testosterone 6β-hydroxylation activities in the presence and absence of AP extracts and andrographolide. Our results indicate that AP ethanol and methanol extracts inhibited CYP activities more potently than aqueous and hexane extracts across the three isoforms. Potent inhibitory effects were observed on CYP3A4 and CYP2C9 activities (K (i) values below 20 μg/ml). Andrographolide was found to exclusively but weakly inhibit CYP3A4 activity. In conclusion, data presented in this study suggest that AP extracts have the potential to inhibit CYP isoforms in vitro. There was, however, variation in the potency of inhibition depending on the extracts and the isoforms investigated.
Goniothalamus scortechinii, Andrographis paniculata and Aralidium pinnatifidum were selected for the study based on their ethnomedicinal values. They were screened for anti-malarial activity towards Plasmodium falciparum in vitro using the lactate dehydrogenase (LDH) assay. The crude extract of G. scortechinii exhibited the most potent schizonticidal activity compared to the other extracts. It is effective against both the chloroquine resistant isolate, Gombak A and the sensitive strain, D10 of Plasmodium falciparum. Furthermore a better IC(50) value was obtained against the resistant strain, (9 microg/ml) compared to the sensitive strain, 40 microg/ml. When the crude extract was fractionated into 3 fractions, the chloroform fraction yielded the best activity, exhibiting equipotency against both strains of parasite used; IC(50) of 23.53 microg/ml against Gombak A and 21.06 microg/ml against D10.
Thirty-two male goats were randomly assigned to four dietary treatments namely, basal diet 70% concentrate and 30% oil palm fronds (control, CN), CN + 400 mg/kg vitamin E (VE), 0.5% turmeric (TU) or 0.5% Anderographis paniculata (AP). After 100 days of feeding, the goats were slaughtered and longissimus dorsi (LD) muscle was sampled. The muscle was vacuum-packaged and conditioned for 0, 7 and 14 days in a chiller (4 °C). The drip loss of the LD muscle increased (P < 0.05) with aging time. Meat tenderness was improved (p < 0.05) at 14 days aging. All antioxidant supplements improved (P < 0.05) colour of the meat. The TBARS value increased (P < 0.05) at 7 days of aging while the fatty acid composition was not affected by the dietary supplements. It is concluded that TU and AP are potential dietary antioxidant supplements, for the purpose of improving the quality of chevon.
Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
Increasing evidence suggests a sizable involvement of hemotoxins in the morbidity associated with envenomation by the Indian spectacled cobra, Naja naja (N.N). This study investigates the ability of Indian polyvalent anti-snake venom (ASV), methanolic extract of Andrographis paniculata (MAP) and their combination in reversing the hemostatic abnormalities, viz. activated partial thromboplastin time(aPTT), prothrombin time(PT) and thrombin time(TT) in citrated plasma. These parameters were assessed in 2 groups of experiments. Group 1: Without the prior incubation of plasma with venom and Group 2: With prior incubation of plasma with venom for 90 min at 37°C. Venom caused significant (p
Andrographis paniculata (Burm. F) Nees, has been widely used for upper respiratory tract and several other diseases and general immunity for a historically long time in countries like India, China, Thailand, Japan, and Malaysia. The vegetative productivity and quality with respect to pharmaceutical properties of Andrographis paniculata varies considerably across production, ecologies, and genotypes. Thus, a field deployable instrument, which can quickly assess the quality of the plant material with minimal processing, would be of great use to the medicinal plant industry by reducing waste, and quality grading and assurance. In this paper, the potential of near infrared reflectance spectroscopy (NIR) was to estimate the major group active molecules, the andrographolides in Andrographis paniculata, from dried leaf samples and leaf methanol extracts and grade the plant samples from different sources. The calibration model was developed first on the NIR spectra obtained from the methanol extracts of the samples as a proof of concept and then the raw ground samples were estimated for gradation. To grade the samples into three classes: good, medium and poor, a model based on a machine learning algorithm - support vector machine (SVM) on NIR spectra was built. The tenfold classification results of the model had an accuracy of 83% using standard normal variate (SNV) preprocessing.
Andrographis paniculata (Burm. f.) Wall. ex Nees. (AP) is a hermaphroditic, self-compatible, and habitual inbreeding plant. Its main bioactive component is andrographolide, which is capable of inducing autophagic cell death in some human cancer cells and helps fight HIV/AIDS. Increasing the andrographolide content by investigating the genetic mechanisms controlling its biosynthesis in order to improve and develop high-yielding cultivars are the main breeding targets for AP. However, there might exist some limitations or barriers for crossability within AP accessions. Recently, this problem was addressed in AP by using a combination of crossbreeding and biotechnology-aided genetic methods. This review emphasizes that development of a breeding platform in a hard-to-breed plant, such as AP, requires the involvement of a broad range of methods from classical genetics to molecular breeding. To this end, a phenological stage (for example, flowering and stigma development) can be simplified to a quantitative morphological trait (for example, bud or stigma length) to be used as an index to express the highest level of receptivity in order to manage outcrossing. The outcomes of the basic crossability research can be then employed in diallel mating and crossbreeding. This review explains how genomic data could produce useful information regarding genetic distance and its influence on the crossability of AP accessions. Our review indicates that co-dominant DNA markers, such as microsatellites, are also capable of resolving the evolutionary pathway and cryptic features of plant populations and such information can be used to select the best breeding strategy. This review also highlights the importance of proteomic analysis as a breeding tool. In this regard, protein diversification, as well as the impact of normal and stress-responsive proteins on morphometric and physiological behaviors, could be used in breeding programs. These findings have immense potential for improving plant production and, therefore, can be regarded as prospective breeding platforms for medicinal plants that have an autogamous mode of reproduction. Finally, this review suggests that novel site-directed genome editing approaches such as TALENs (Transcription Activator-Like Effector Nucleases) and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) systems together with other new plant breeding technologies (NPBT) should simultaneously be taken into consideration for improvement of pharmaceutical plants.
The recent expanding rat population is causing severe economic losses and diseases in human. The main objective of this study was to evaluate the antifertility effects of Andrographis paniculata (AP) methanol extract on the weight of testis, sexual behaviour, fertility, sperm quality and serum testosterone level in treated male rats compared with control rats. A total of 21 adult male rats Sprague-Dawley aged 12 weeks were divided into three groups; control group (distilled water), low dose group (800 mg/kg) and high dose group (1600 mg/kg) of AP methanol extracts given orally for 24 days. Body and testis weight, sexual behaviour test, fertility test, sperm quality and serum testosterone level were measured. Oral administration of AP methanol extract showed a significant decrease in testis weight, number of mountings, number of fetuses, sperm count, sperm motility and serum testosterone levels for all treatment group as compared with the control group, whereas mortality showed a significant increase. Observation on testis histology of treatment group exhibited features of degeneration in Sertoli cells and germinal cells in the seminiferous tubules, followed by the shrinkage of Leydig cells as compared with the control group, which showed characteristics of normal spermatogenesis. In conclusion, AP methanol extract exhibited antifertility effects in male rats, suggesting that AP is a potential herb to be applied as rodenticide.
Substantial evidence has shown that most cases of memory impairment are associated with increased neuroinflammation and oxidative stress. In this study, the potential of a standardised Andrographis paniculata aqueous extract (APAE) to reverse neuroinflammation and cognitive impairment induced by lipopolysaccharide (LPS) was examined in vivo. Rats were treated with APAE (50, 100, 200, and 400 mg·kg-1, p.o.) for 7 consecutive days prior to LPS (1 mg·kg-1, i.p.)-induced neuroinflammation and cognitive impairment. Spatial learning and memory were evaluated using the Morris water maze (MWM) test, while neuroinflammation and oxidative stress were assessed through the measurement of specific mediators, namely, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, superoxide dismutase (SOD), catalase (CAT), antioxidant glutathione (GSH), reactive oxygen species (ROS), and thiobarbituric acid reactive substance (TBARS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were also evaluated. LPS caused significant memory deficits in the 2-day MWM protocol, whereas pretreatment with standardised APAE dose-dependently improved performance in the MWM test. APAE treatment also blocked the LPS-induced hippocampal increase in the concentration and expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and production of ROS and TBARS and enhanced the activities of AChE and BChE. Furthermore, APAE enhanced the decrease in the levels and expression of hippocampal antioxidant enzymes (SOD and CAT) following LPS-induced neuroinflammation and cognitive deficit. The findings from these studies suggested that standardised APAE improved memory and had potent neuroprotective effects against LPS-induced neurotoxicity.
Andrographis paniculata is a grass-shaped medicinal herb, traditionally used in Southeast Asia. The aim of this study was to evaluate the chemoprotective effects of A. paniculata on colorectal cancer. A. paniculata ethanol extract was tested on azoxymethane (AOM)-induced aberrant crypt foci (ACF) in vivo and in vitro. A. paniculata treated groups showed a significant reduction in the number of ACF of the treated rats. Microscopically, ACF showed remarkably elongated and stratified cells, and depletion of the submucosal glands of AOM group compared to the treated groups. Histologically, staining showed slightly elevated masses above the surrounding mucosa with oval or slit-like orifices. Immunohistochemically, expression of proliferating cell nuclear antigen (PCNA) and β-catenin protein were down-regulated in the A. paniculata treated groups compared to the AOM group. When colon tissue was homogenized, malondialdehyde (MDA) and nitric oxide (NO) levels were significantly decreased, whereas superoxide dismutase (SOD) activity was increased in the treated groups compared to the AOM group. A. paniculata ethanol extract showed antioxidant and free radical scavenging activity, as elucidated by the measure of oxidative stress markers. Further, the active fractions were assessed against cell lines of CCD841 and HT29 colon cancer cells.
This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.
A simple and validated high-performance liquid chromatography (HPLC) method with UV detection has been used to determine the content of andrographolide (AP) and 14-deoxy-11,12-didehydroandrographolide (DIAP) in rat plasma after oral dose of methanol extract (1 g/kg body weight) of Andrographis paniculata leaf. An increase in plasma concentration of AP and DIAP was observed from 30 min to 3 h after oral administration of the extract. The maximum plasma concentrations of AP and DIAP were 1.42+/-0.09 microg/ml and 1.31+/-0.04 microg/ml, respectively. Fourteen days oral treatment of rats with the methanol extract (1 g/kg body weight) followed by CCl(4) administration preserved catalase (CAT), and superoxide dismutase (SOD) activities in erythrocytes, whereas plasma lipid peroxidation, alanine transaminase (ALT) and aspartate transaminase (AST) activities were restored to values comparable with control values. Treatment of rats with CCl(4) did not showed significant alteration (p>0.05) in plasma total antioxidant status (TAS) as compare to values of control group.