Displaying publications 41 - 60 of 272 in total

Abstract:
Sort:
  1. Ng KP, Kuan CS, Kaur H, Na SL, Atiya N, Velayuthan RD
    Trop Med Int Health, 2015 Nov;20(11):1447-1453.
    PMID: 26216479 DOI: 10.1111/tmi.12577
    To describe a prospective laboratory-based surveillance of Candida species that were collected from different anatomical sites of patients admitted to the University of Malaya Medical Centre, Malaysia, from the year 2000 to 2013.
    Matched MeSH terms: Candida
  2. Amran F, Aziz MN, Ibrahim HM, Atiqah NH, Parameswari S, Hafiza MR, et al.
    J Med Microbiol, 2011 Sep;60(Pt 9):1312-1316.
    PMID: 21459913 DOI: 10.1099/jmm.0.027631-0
    The in vitro antifungal susceptibilities of 159 clinical isolates of Candida species from patients with invasive candidiasis in Kuala Lumpur Hospital, Malaysia, were determined against amphotericin B, fluconazole, voriconazole, itraconazole and caspofungin. The most common species were Candida albicans (71 isolates), Candida parapsilosis (42 isolates), Candida tropicalis (27 isolates) and Candida glabrata (12 isolates). The susceptibility tests were carried out using an E-test. The MIC breakpoints were based on Clinical Laboratory Standards Institute criteria. Amphotericin B and voriconazole showed the best activities against all the isolates tested, with MIC(90) values of ≤1 µg ml(-1) for all major species. Only one Candida lusitaniae isolate was resistant to amphotericin B, and all the isolates were susceptible to voriconazole. In total, six isolates were resistant to fluconazole, comprising two isolates of C. albicans, two of C. parapsilosis, one C. tropicalis and one C. glabrata, and all of these isolates showed cross-resistance to itraconazole. The MIC(90) of itraconazole was highest for C. glabrata and C. parapsilosis. Caspofungin was active against most of the isolates except for five isolates of C. parapsilosis. The MIC(90) of caspofungin against C. parapsilosis was 3 µg ml(-1). In conclusion, amphotericin B remains the most active antifungal agent against most Candida species except for C. lusitaniae. Voriconazole is the best alternative for fluconazole- or itraconizole-resistant isolates. Although five of the C. parapsilosis isolates showed in vitro resistance to caspofungin, more clinical correlation studies need to be carried out to confirm the significance of these findings. Currently, despite the increase in usage of antifungals in our hospitals, especially in the management of febrile neutropenia patients, the antifungal-resistance problem among clinically important Candida isolates in Kuala Lumpur Hospital is not yet worrying. However, continued antifungal-susceptibility surveillance needs to be conducted to monitor the antifungal-susceptibility trends of Candida species and other opportunistic fungal pathogens.
    Matched MeSH terms: Candida/classification; Candida/drug effects*; Candida/isolation & purification
  3. Javed F, Tenenbaum HC, Nogueira-Filho G, Nooh N, Taiyeb Ali TB, Samaranayake LP, et al.
    Int Wound J, 2014 Feb;11(1):79-84.
    PMID: 22883719 DOI: 10.1111/j.1742-481X.2012.01070.x
    Oral Candida colonisation is higher in tobacco smokers as compared to non-smokers; however, it remains unknown whether smokeless tobacco chewers are susceptible to increased oral Candida colonisation. The aim was to determine the oral Candida carriage and species prevalence amongst habitual gutka-chewers and non-chewers in a cohort from Karachi, Pakistan. Forty-five gutka-chewers and 45 non-chewers were included. Information regarding age, sex, duration of gutka-chewing habit, daily frequency of gutka consumption, duration of holding gutka in the mouth, daily frequency of tooth-brushing and tongue brushing was collected using a questionnaire. Oral yeast samples were collected by scraping the dorsum of the tongue and bilateral buccal mucosa with a sterile cotton swab. Identification of yeast species was performed using standard techniques. Tongue lesions were identified and recorded. Unstimulated whole salivary flow rate (UWSFR) was also measured. There was no significant difference in the mean age, UWSFR and oral Candida carriage among gutka-chewers and non-chewers. Individuals were chewing gutka since 4·4 years and were consuming five gutka sachets daily. Candida albicans (C. albicans) was the most common yeast species isolated from 57·8% gutka-chewers and 64.4% non-chewers. In 24.4% gutka-chewers and 22·2% non-chewers, two candidal strains (C. albicans and Candida tropicalis) were isolated. In conclusion, the present results indicated no significant difference in oral Candida carriage in habitual gutka-chewers and non-chewers.
    Matched MeSH terms: Candida/isolation & purification*; Candida albicans/isolation & purification
  4. Harold Criso Ajin, Mohamed Kamel Abd Ghani, Abdul Hamid Abd Aziz, Ahmad Zorin Sahalan, Norazah Ahmad
    MyJurnal
    Kajian ini dilakukan bertujuan untuk menentukan prevalens kandidiasis dalam kalangan wanita yang berumur 20 hingga 59 tahun di Hospital Umum Sarawak melalui pemeriksaan ke atas lumuran Pap lazim. Prevalens jangkitan ini dikaji dalam kalangan lima kumpulan etnik yang utama iaitu kaum Iban, Cina, Melayu, Bidayuh dan Orang Ulu. Penyaringan mikroskopik dijalankan ke atas lumuran Pap lazim sejumlah 300 sampel slaid yang telah diproses dan dicelup menggunakan pencelupan Papanicolaou. Berdasarkan maklumat pada borang permohonan penyaringan lumuran Pap, tanda dan gejala jangkitan diambil kira sebagai petunjuk penting semasa penyaringan kerana melalui tanda dan gejala jangkitan, lumuran Pap mempunyai hubungan yang rapat dengan ciri-ciri gambaran sitomorfologi jangkitan yang berlaku ke atas sel-sel epitelium sekiranya ia mengalami jangkitan. Kategori umur untuk setiap golongan etnik juga dijadikan sebagai salah satu faktor pengukur bagi menilai tahap kekerapan jangkitan. Hasil kajian menunjukkan Candida sp. telah dapat dikesan sebanyak 12.7% daripada jumlah spesimen. Jangkitan berlaku pada kesemua kumpulan etnik dan juga pada kesemua golongan umur 20 hingga 59 tahun. Kesemua kes turut menunjukkan tanda dan gejala jangkitan. Hasil kajian ini menunjukkan pentingnya menjalankan ujian penyaringan lumuran Pap bagi mengesan jangkitan kandida di samping sebagai saringan awal pengesanan kanser serviks.


    Matched MeSH terms: Candida
  5. Wadhwa R, Pandey P, Gupta G, Aggarwal T, Kumar N, Mehta M, et al.
    Curr Top Med Chem, 2019;19(28):2593-2609.
    PMID: 31746290 DOI: 10.2174/1568026619666191026105308
    BACKGROUND: Candida species are the important etiologic agents for candidiasis, the most prevalent cause of opportunistic fungal infections. Candida invasion results in mucosal to systemic infections through immune dysfunction and helps in further invasion and proliferation at several sites in the host. The host defence system utilizes a wide array of the cells, proteins and chemical signals that are distributed in blood and tissues which further constitute the innate and adaptive immune system. The lack of antifungal agents and their limited therapeutic effects have led to high mortality and morbidity related to such infections.

    METHODS: The necessary information collated on this review has been gathered from various literature published from 1995 to 2019.

    RESULTS: This article sheds light on novel drug delivery approaches to target the immunological axis for several Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. rugose, C. hemulonii, etc.).

    CONCLUSION: It is clear that the novel drug delivery approaches include vaccines, adoptive transfer of primed immune cells, recombinant cytokines, therapeutic antibodies, and nanoparticles, which have immunomodulatory effects. Such advancements in targeting various underpinning mechanisms using the concept of novel drug delivery will provide a new dimension to the fungal infection clinic particularly due to Candida species with improved patient compliance and lesser side effects. This advancement in knowledge can also be extended to target various other similar microbial species and infections.

    Matched MeSH terms: Candida/classification; Candida/drug effects*; Candida/immunology
  6. Chin VK, Lee TY, Rusliza B, Chong PP
    Int J Mol Sci, 2016 Oct 18;17(10).
    PMID: 27763544
    Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida-host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future.
    Matched MeSH terms: Candida albicans/immunology; Candida albicans/pathogenicity*; Candida albicans/physiology*
  7. Chong WX, Lai YX, Choudhury M, Amalraj FD
    J Prosthet Dent, 2022 Nov;128(5):1114-1120.
    PMID: 33685653 DOI: 10.1016/j.prosdent.2021.01.010
    STATEMENT OF PROBLEM: The presence of biofilms on maxillofacial silicone increases the risk of infections and reduces durability. Whether silver nanoparticles (AgNPs) with potent antimicrobial effects help reduce biofilm formation is unclear.

    PURPOSE: The purpose of this in vitro study was to assess the antimicrobial effect of sub 10-nm AgNPs in maxillofacial silicone against Staphylococcus aureus, Candida albicans, and mixed species biofilms containing both and to test the effectiveness of different AgNP concentrations against all 3 biofilms in vitro.

    MATERIAL AND METHODS: Silicone disks (M511; Technovent Ltd) containing 0.0% (control), 0.1%, and 0.5% AgNPs were fabricated and treated with S. aureus, C. albicans, and mixed species strains of both in 24-well culture plates containing appropriate media. Each well received a 0.1-mL aliquot of the standardized suspension of microorganisms. The plates were incubated for 21 consecutive days, and colony-forming units per milliliter (CFU/mL) were measured on the first, third, fifth, seventh, fifteenth, and twenty-first day with the Miles and Misra method. Data were analyzed by 2-way ANOVA and the paired t test to evaluate the relationship between AgNP concentration, microbial strain, and time (α=.05). Mean CFU/mL differences for each time and for each biofilm category were assessed by repeated measure ANOVA.

    RESULTS: AgNPs decreased the mean CFU/mL in both concentrations compared with the control. The 0.1% concentration showed sustained efficacy throughout the test, while the 0.5% concentration had high efficacy initially with a gradual decrease. However, the results were inconsistent for the mixed biofilm. The paired sample t test at day 3 and 15 and day 3 and 21 showed statistically significantly different results (P

    Matched MeSH terms: Candida albicans
  8. Krishnen R, Muniandy S
    Wounds, 2023 Aug;35(8):E243-E247.
    PMID: 37643448 DOI: 10.25270/wnds/23017
    INTRODUCTION: Drug-resistant fungal infections in chronic wounds represent a major clinical challenge to clinicians. Fungal infections delay wound healing by prolonging inflammation and encouraging biofilm formation, which protects microbes against host defenses and anti-infective medications. As such, interventions that prevent and control nosocomial fungal infections without interfering with the wound healing process are increasingly required. Although conventional antiseptics can effectively exert fungicidal effects, they also have adverse effects on human cells. SOS is a well-known bactericidal agent that enhances the wound healing process, especially for chronic wounds. However, few studies have evaluated the antimicrobial activity of SOS on fungi.

    OBJECTIVE: The objective of this study was to evaluate whether SOS exerts fungicidal activities against common fungal species.

    MATERIALS AND METHODS: The efficacy of SOS was tested against 6 fungal species (Candida albicans, Candida auris, Candida tropicalis, Candida parapsilosis, Sporothrix schenckii, Trichophyton mentagrophytes) using an in vitro time-kill assay.

    RESULTS: SOS achieved 99.9999% reduction of all tested fungi within 1 minute of exposure.

    CONCLUSIONS: This study shows that SOS may be an effective tool for the prevention and control of fungal infections.

    Matched MeSH terms: Candida albicans
  9. Munusamy K, Vadivelu J, Tay ST
    Rev Iberoam Micol, 2018 03 12;35(2):68-72.
    PMID: 29544734 DOI: 10.1016/j.riam.2017.07.001
    BACKGROUND: Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

    AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

    METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

    RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

    CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.

    Matched MeSH terms: Candida/drug effects*; Candida/physiology; Candida albicans/drug effects; Candida albicans/physiology; Candida albicans/ultrastructure
  10. Nordin MA, Wan Harun WH, Abdul Razak F
    BMC Complement Altern Med, 2013 Dec 04;13:342.
    PMID: 24305010 DOI: 10.1186/1472-6882-13-342
    BACKGROUND: Candida species have been associated with the emergence of resistant strains towards selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease candidal infections. The present study was undertaken to investigate the antifungal susceptibility patterns and growth inhibiting effect of Brucea javanica seeds extract against Candida species.

    METHODS: A total of seven Candida strains that includes Candida albicans ATCC14053, Candida dubliniensis ATCCMYA-2975, Candida glabrata ATCC90030, Candida krusei ATCC14243, Candida lusitaniae ATCC64125, Candida parapsilosis ATCC22019 and Candida tropicalis ATCC13803 were used in this study. The antifungal activity, minimum inhibitory concentration and minimum fungicidal concentration of B. javanica extract were evaluated. Each strain was cultured in Yeast Peptone Dextrose broth under four different growth environments; (i) in the absence and presence of B. javanica extract at respective concentrations of (ii) 1 mg/ml (iii) 3 mg/ml and (iv) 6 mg/ml. The growth inhibitory responses of the candidal cells were determined based on changes in the specific-growth rates (μ) and doubling time (g). The values in the presence of extract were computed as percentage in the optical density relative to that of the total cells suspension in the absence of extract.

    RESULTS: B. javanica seeds extract exhibited antifungal properties. C. tropicalis showed the highest growth rate; 0.319 ± 0.002 h(-1), while others were in the range of 0.141 ± 0.001 to 0.265 ± 0.005 h(-1). In the presence of extract, the lag and log phases were extended and deviated the μ- and g-values. B. javanica extract had significantly reduced the μ-values of C. dubliniensis, C. krusei and C. parapsilosis at more than 80% (ρ Candida species. The fungistatic and growth inhibiting effects of B. javanica extract have shown that it has potential to be considered as a promising candidate for the development of antifungal agent in oral health products.

    Matched MeSH terms: Candida/classification; Candida/drug effects*; Candida/growth & development*; Candida/isolation & purification
  11. Arzmi MH, Abdul Razak F, Yusoff Musa M, Wan Harun WH
    FEMS Yeast Res., 2012 May;12(3):351-8.
    PMID: 22225549 DOI: 10.1111/j.1567-1364.2011.00786.x
    Phenotypic switching is characterized as a virulence factor of Candida spp. This study was carried out to evaluate the phenotypic switching ability of C. krusei ATCC 14243 and to determine its effect on the biological properties, adherence capacity and susceptibility towards chlorhexidine digluconate (CHX). To induce switched generations C. krusei was cultured under nitrogen-depleted growth conditions by adding phloxine B. These phenotypically switched colonies were designated as the 1st generation. Subsequent sub-culturing was performed to produce the 2nd, 3rd and 4th switched generations. The recovery of the 3rd generation was the highest at 85.7% while that of the 4th generation was lower at 70.8%, and the recovery of the 1st and 2nd generations gradually reduced to 46.6% and 36.4%, respectively. All generations of C. krusei were susceptible towards CHX. The unswitched C. krusei was the most susceptible but the least adherent to coated hard surfaces. The 2nd generation was the least susceptible, but with the highest adherent ability. The minimum inhibition concentration and minimal fungicidal concentration of C. krusei of all generations were determined at 0.4 mg mL(-1) . These observations suggest that the switching activity of C. krusei induces changes to its biological properties and susceptibility towards CHX.
    Matched MeSH terms: Candida/classification; Candida/drug effects*; Candida/pathogenicity; Candida/physiology*
  12. Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP
    J Basic Microbiol, 2009 Dec;49(6):579-83.
    PMID: 19810039 DOI: 10.1002/jobm.200900035
    Candida albicans is capable of undergoing yeast-hypha transition to attain pathogenicity in humans. In this study, we investigated the differential expression of CaSIR2 via quantitative real-time PCR (qPCR), during yeast-hypha transition with and without the presence of 2-dodecanol. SIR2 transcript levels were found to be significantly enhanced after hyphal induction as compared to the yeast form. This study found that 2-dodecanol is able to inhibit hyphal development and block SIR2 up-regulation, even in hyphal-inducing growth conditions. We suggest that SIR2 may be involved in Candida albicans quorum-sensing and serum-induced yeast-hyphae transition via the Ras1-cAMP-Efg1 signalling cascade.
    Matched MeSH terms: Candida albicans/drug effects*; Candida albicans/genetics; Candida albicans/growth & development; Candida albicans/metabolism
  13. Tay ST, Abidin IA, Hassan H, Ng KP
    Med Mycol, 2011 Jul;49(5):556-60.
    PMID: 21254967 DOI: 10.3109/13693786.2010.551424
    This study was conducted to determine the proteinase, phospholipase, and biofilm forming abilities of Candida isolates in blood cultures of specimens from patients at the University Malaya Medical Center, Kuala Lumpur, Malaysia. Proteinase and phospholipase activities were detected in 93.7% and 73.3%, respectively, of 15 Candida albicans isolates. Amongst the 26 non-C. albicans Candida isolates, proteinase and phospholipase activities were detected in 88.5% and 7.7% of the isolates, respectively. There was no significant difference in the expression levels of proteinase amongst the Candida isolates studied (P = 0.272), but the phospholipase activity of C. albicans was significantly higher than that of the non-C. albicans Candida isolates (P = 0.003). There was no significant difference in the biofilm forming abilities of C. albicans and non-C. albicans Candida isolates on the polystyrene microtiter wells (P = 0.379). In addition, the findings of this study demonstrate increased resistance of Candida isolates in biofilms to amphotericin and fluconazole, as compared to their planktonic counterparts.
    Matched MeSH terms: Candida albicans/drug effects; Candida albicans/enzymology*; Candida albicans/isolation & purification; Candida albicans/physiology*
  14. Borman AM, Szekely A, Johnson EM
    Med Mycol, 2017 Jul 01;55(5):563-567.
    PMID: 28204557 DOI: 10.1093/mmy/myw147
    Candida auris has recently emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide and the existence of geographic region-specific discrete clonal lineages. Here we have compared the rDNA sequences of 24 isolates of Candida auris from 14 different hospital centers in the United Kingdom with those of strains from different international origins present in the public sequence databases. Here we show that UK isolates of C. auris fall into three well-supported clades corresponding to lineages that have previously been reported from India, Malaysia and Kuwait, Japan and Korea, and South Africa, respectively.
    Matched MeSH terms: Candida/classification*; Candida/drug effects; Candida/genetics; Candida/isolation & purification
  15. Lok B, Adam MAA, Kamal LZM, Chukwudi NA, Sandai R, Sandai D
    Med Mycol, 2021 Feb 04;59(2):115-125.
    PMID: 32944760 DOI: 10.1093/mmy/myaa080
    Candida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C. albicans infections. The fungi's ability to assimilate a variety of carbon sources plays a vital role in its colonization, and by extension, its fitness and pathogenicity, as it often inhabits niches that are glucose-limited but rich in alternative carbon sources. A difference in carbon sources affect the growth and mating of C. albicans, which contributes to its pathogenicity as proliferation helps the fungi colonize its environment. The carbon source also affects its metabolism and signaling pathways, which are integral parts of the fungi's fitness and pathogenicity. As a big percentage of the carbon assimilated by C. albicans goes to cell wall biogenesis, the availability of different carbon sources will result in cell walls with variations in rigidity, adhesion, and surface hydrophobicity. In addition to the biofilm formation of the fungi, the carbon source also influences whether the fungi grow in yeast- or mycelial-form. Both forms play different roles in C. albicans's infection process. A better understanding of the role of the carbon sources in C. albicans's pathogenicity would contribute to more effective treatment solutions for fungal infections.
    Matched MeSH terms: Candida albicans/genetics; Candida albicans/growth & development; Candida albicans/metabolism*; Candida albicans/pathogenicity*
  16. Madhavan P, Jamal F, Pei CP, Othman F, Karunanidhi A, Ng KP
    Mycopathologia, 2018 Jun;183(3):499-511.
    PMID: 29380188 DOI: 10.1007/s11046-018-0243-z
    Infections by non-albicans Candida species are a life-threatening condition, and formation of biofilms can lead to treatment failure in a clinical setting. This study was aimed to demonstrate the in vitro antibiofilm activity of fluconazole (FLU) and voriconazole (VOR) against C. glabrata, C. parapsilosis and C. rugosa with diverse antifungal susceptibilities to FLU and VOR. The antibiofilm activities of FLU and VOR in the form of suspension as well as pre-coatings were assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. Morphological and intracellular changes exerted by the antifungal drugs on Candida cells were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of the antibiofilm activities showed that FLU drug suspension was capable of killing C. parapsilosis and C. rugosa at minimum inhibitory concentrations (MICs) of 4× MIC FLU and 256× MIC FLU, respectively. While VOR MICs ranging from 2× to 32× were capable of killing the biofilms of all Candida spp tested. The antibiofilm activities of pre-coated FLU were able to kill the biofilms at ¼× MIC FLU and ½× MIC FLU for C. parapsilosis and C. rugosa strains, respectively. While pre-coated VOR was able to kill the biofilms, all three Candida sp at ½× MIC VOR. SEM and TEM examinations showed that FLU and VOR treatments exerted significant impact on Candida cell with various degrees of morphological changes. In conclusion, a fourfold reduction in MIC50 of FLU and VOR towards ATCC strains of C. glabrata, C. rugosa and C. rugosa clinical strain was observed in this study.
    Matched MeSH terms: Candida/cytology; Candida/drug effects*; Candida/isolation & purification; Candida/physiology*
  17. Tan HW, Tay ST
    Mycoses, 2013 Mar;56(2):150-6.
    PMID: 22882276 DOI: 10.1111/j.1439-0507.2012.02225.x
    Aureobasidin A (AbA) is a cyclic depsipeptide antifungal compound that inhibits a wide range of pathogenic fungi. In this study, the in vitro susceptibility of 92 clinical isolates of various Candida species against AbA was assessed by determining the planktonic and biofilm MICs of the isolates. The MIC(50) and MIC(90) of the planktonic Candida yeast were 1 and 1 μg ml(-1), respectively, whereas the biofilm MIC(50) and MIC(90) of the isolates were 8 and ≥64 μg ml(-1) respectively. This study demonstrates AbA inhibition on filamentation and biofilm development of C. albicans. The production of short hyphae and a lack of filamentation might have impaired biofilm development of AbA-treated cells. The AbA resistance of mature Candidia biofilms (24 h adherent population) was demonstrated in this study.
    Matched MeSH terms: Candida/classification; Candida/drug effects*; Candida/isolation & purification; Candida/physiology
  18. Fathilah AR, Himratul-Aznita WH, Fatheen AR, Suriani KR
    J Dent, 2012 Jul;40(7):609-15.
    PMID: 22521700 DOI: 10.1016/j.jdent.2012.04.003
    C. tropicalis and C. krusei have emerged as virulent species causing oral infections. Both have developed resistance to commonly prescribed azole antifungal agents.
    Matched MeSH terms: Candida/drug effects*; Candida/growth & development; Candida tropicalis/drug effects; Candida tropicalis/growth & development
  19. Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F
    J Appl Microbiol, 2008 Dec;105(6):2169-77.
    PMID: 19120662 DOI: 10.1111/j.1365-2672.2008.03912.x
    The aims of the present study were to determine whether Allium sativum (garlic) extract has any effect on the morphology transformation of Candida albicans, and to investigate whether it could alter the gene expression level of SIR2, a morphogenetic control gene and SAP4, a gene encoding secreted aspartyl proteinase.
    Matched MeSH terms: Candida albicans/drug effects*; Candida albicans/enzymology; Candida albicans/genetics; Candida albicans/metabolism; Candida albicans/ultrastructure
  20. Ahmed Z, Hwang SJ, Shin SK, Song J
    J Hazard Mater, 2010 Apr 15;176(1-3):849-55.
    PMID: 20031312 DOI: 10.1016/j.jhazmat.2009.11.114
    The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in a bubble-column bioreactor, and the toluene removal efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The toluene removal efficiency was enhanced when granular activated carbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m(3)/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m(3)/h at a toluene loading of 291 g/m(3)/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high toluene removal capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene.
    Matched MeSH terms: Candida tropicalis/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links