METHODS: The necessary information collated on this review has been gathered from various literature published from 1995 to 2019.
RESULTS: This article sheds light on novel drug delivery approaches to target the immunological axis for several Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. rugose, C. hemulonii, etc.).
CONCLUSION: It is clear that the novel drug delivery approaches include vaccines, adoptive transfer of primed immune cells, recombinant cytokines, therapeutic antibodies, and nanoparticles, which have immunomodulatory effects. Such advancements in targeting various underpinning mechanisms using the concept of novel drug delivery will provide a new dimension to the fungal infection clinic particularly due to Candida species with improved patient compliance and lesser side effects. This advancement in knowledge can also be extended to target various other similar microbial species and infections.
PURPOSE: The purpose of this in vitro study was to assess the antimicrobial effect of sub 10-nm AgNPs in maxillofacial silicone against Staphylococcus aureus, Candida albicans, and mixed species biofilms containing both and to test the effectiveness of different AgNP concentrations against all 3 biofilms in vitro.
MATERIAL AND METHODS: Silicone disks (M511; Technovent Ltd) containing 0.0% (control), 0.1%, and 0.5% AgNPs were fabricated and treated with S. aureus, C. albicans, and mixed species strains of both in 24-well culture plates containing appropriate media. Each well received a 0.1-mL aliquot of the standardized suspension of microorganisms. The plates were incubated for 21 consecutive days, and colony-forming units per milliliter (CFU/mL) were measured on the first, third, fifth, seventh, fifteenth, and twenty-first day with the Miles and Misra method. Data were analyzed by 2-way ANOVA and the paired t test to evaluate the relationship between AgNP concentration, microbial strain, and time (α=.05). Mean CFU/mL differences for each time and for each biofilm category were assessed by repeated measure ANOVA.
RESULTS: AgNPs decreased the mean CFU/mL in both concentrations compared with the control. The 0.1% concentration showed sustained efficacy throughout the test, while the 0.5% concentration had high efficacy initially with a gradual decrease. However, the results were inconsistent for the mixed biofilm. The paired sample t test at day 3 and 15 and day 3 and 21 showed statistically significantly different results (P
OBJECTIVE: The objective of this study was to evaluate whether SOS exerts fungicidal activities against common fungal species.
MATERIALS AND METHODS: The efficacy of SOS was tested against 6 fungal species (Candida albicans, Candida auris, Candida tropicalis, Candida parapsilosis, Sporothrix schenckii, Trichophyton mentagrophytes) using an in vitro time-kill assay.
RESULTS: SOS achieved 99.9999% reduction of all tested fungi within 1 minute of exposure.
CONCLUSIONS: This study shows that SOS may be an effective tool for the prevention and control of fungal infections.
AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.
METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.
RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.
CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.
METHODS: A total of seven Candida strains that includes Candida albicans ATCC14053, Candida dubliniensis ATCCMYA-2975, Candida glabrata ATCC90030, Candida krusei ATCC14243, Candida lusitaniae ATCC64125, Candida parapsilosis ATCC22019 and Candida tropicalis ATCC13803 were used in this study. The antifungal activity, minimum inhibitory concentration and minimum fungicidal concentration of B. javanica extract were evaluated. Each strain was cultured in Yeast Peptone Dextrose broth under four different growth environments; (i) in the absence and presence of B. javanica extract at respective concentrations of (ii) 1 mg/ml (iii) 3 mg/ml and (iv) 6 mg/ml. The growth inhibitory responses of the candidal cells were determined based on changes in the specific-growth rates (μ) and doubling time (g). The values in the presence of extract were computed as percentage in the optical density relative to that of the total cells suspension in the absence of extract.
RESULTS: B. javanica seeds extract exhibited antifungal properties. C. tropicalis showed the highest growth rate; 0.319 ± 0.002 h(-1), while others were in the range of 0.141 ± 0.001 to 0.265 ± 0.005 h(-1). In the presence of extract, the lag and log phases were extended and deviated the μ- and g-values. B. javanica extract had significantly reduced the μ-values of C. dubliniensis, C. krusei and C. parapsilosis at more than 80% (ρ Candida species. The fungistatic and growth inhibiting effects of B. javanica extract have shown that it has potential to be considered as a promising candidate for the development of antifungal agent in oral health products.